使用单一情感用户维度的ECA控制

Fred Charles, Florian Pecune, Gabor Aranyi, C. Pelachaud, M. Cavazza
{"title":"使用单一情感用户维度的ECA控制","authors":"Fred Charles, Florian Pecune, Gabor Aranyi, C. Pelachaud, M. Cavazza","doi":"10.1145/2818346.2820730","DOIUrl":null,"url":null,"abstract":"User interaction with Embodied Conversational Agents (ECA) should involve a significant affective component to achieve realism in communication. This aspect has been studied through different frameworks describing the relationship between user and ECA, for instance alignment, rapport and empathy. We conducted an experiment to explore how an ECA's non-verbal expression can be controlled to respond to a single affective dimension generated by users as input. Our system is based on the mapping of a high-level affective dimension, approach/avoidance, onto a new ECA control mechanism in which Action Units (AU) are activated through a neural network. Since 'approach' has been associated to prefrontal cortex activation, we use a measure of prefrontal cortex left-asymmetry through fNIRS as a single input signal representing the user's attitude towards the ECA. We carried out the experiment with 10 subjects, who have been instructed to express a positive mental attitude towards the ECA. In return, the ECA facial expression would reflect the perceived attitude under a neurofeedback paradigm. Our results suggest that users are able to successfully interact with the ECA and perceive its response as consistent and realistic, both in terms of ECA responsiveness and in terms of relevance of facial expressions. From a system perspective, the empirical calibration of the network supports a progressive recruitment of various AUs, which provides a principled description of the ECA response and its intensity. Our findings suggest that complex ECA facial expressions can be successfully aligned with one high-level affective dimension. Furthermore, this use of a single dimension as input could support experiments in the fine-tuning of AU activation or their personalization to user preferred modalities.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECA Control using a Single Affective User Dimension\",\"authors\":\"Fred Charles, Florian Pecune, Gabor Aranyi, C. Pelachaud, M. Cavazza\",\"doi\":\"10.1145/2818346.2820730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User interaction with Embodied Conversational Agents (ECA) should involve a significant affective component to achieve realism in communication. This aspect has been studied through different frameworks describing the relationship between user and ECA, for instance alignment, rapport and empathy. We conducted an experiment to explore how an ECA's non-verbal expression can be controlled to respond to a single affective dimension generated by users as input. Our system is based on the mapping of a high-level affective dimension, approach/avoidance, onto a new ECA control mechanism in which Action Units (AU) are activated through a neural network. Since 'approach' has been associated to prefrontal cortex activation, we use a measure of prefrontal cortex left-asymmetry through fNIRS as a single input signal representing the user's attitude towards the ECA. We carried out the experiment with 10 subjects, who have been instructed to express a positive mental attitude towards the ECA. In return, the ECA facial expression would reflect the perceived attitude under a neurofeedback paradigm. Our results suggest that users are able to successfully interact with the ECA and perceive its response as consistent and realistic, both in terms of ECA responsiveness and in terms of relevance of facial expressions. From a system perspective, the empirical calibration of the network supports a progressive recruitment of various AUs, which provides a principled description of the ECA response and its intensity. Our findings suggest that complex ECA facial expressions can be successfully aligned with one high-level affective dimension. Furthermore, this use of a single dimension as input could support experiments in the fine-tuning of AU activation or their personalization to user preferred modalities.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2820730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用户与具身会话代理(ECA)的交互应该包含重要的情感成分,以实现交流的现实性。这方面已经通过描述用户和ECA之间关系的不同框架进行了研究,例如对齐、融洽和同理心。我们进行了一项实验,以探索如何控制ECA的非语言表达,以响应用户作为输入产生的单一情感维度。我们的系统是基于一个高层次的情感维度,接近/回避,映射到一个新的ECA控制机制,其中行动单元(AU)通过一个神经网络被激活。由于“接近”与前额皮质激活有关,我们通过fNIRS测量前额皮质左侧不对称,作为代表用户对ECA态度的单一输入信号。我们对10名受试者进行了实验,他们被要求对ECA表达积极的心理态度。作为回报,ECA面部表情将反映在神经反馈范式下感知到的态度。我们的研究结果表明,用户能够成功地与ECA互动,并将其反应视为一致和现实的,无论是在ECA响应方面还是在面部表情的相关性方面。从系统的角度来看,网络的经验校准支持逐步招募各种AUs,这提供了对ECA响应及其强度的原则性描述。我们的研究结果表明,复杂的ECA面部表情可以成功地与一个高层次的情感维度相一致。此外,使用单一维度作为输入可以支持AU激活的微调实验或用户偏好模式的个性化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECA Control using a Single Affective User Dimension
User interaction with Embodied Conversational Agents (ECA) should involve a significant affective component to achieve realism in communication. This aspect has been studied through different frameworks describing the relationship between user and ECA, for instance alignment, rapport and empathy. We conducted an experiment to explore how an ECA's non-verbal expression can be controlled to respond to a single affective dimension generated by users as input. Our system is based on the mapping of a high-level affective dimension, approach/avoidance, onto a new ECA control mechanism in which Action Units (AU) are activated through a neural network. Since 'approach' has been associated to prefrontal cortex activation, we use a measure of prefrontal cortex left-asymmetry through fNIRS as a single input signal representing the user's attitude towards the ECA. We carried out the experiment with 10 subjects, who have been instructed to express a positive mental attitude towards the ECA. In return, the ECA facial expression would reflect the perceived attitude under a neurofeedback paradigm. Our results suggest that users are able to successfully interact with the ECA and perceive its response as consistent and realistic, both in terms of ECA responsiveness and in terms of relevance of facial expressions. From a system perspective, the empirical calibration of the network supports a progressive recruitment of various AUs, which provides a principled description of the ECA response and its intensity. Our findings suggest that complex ECA facial expressions can be successfully aligned with one high-level affective dimension. Furthermore, this use of a single dimension as input could support experiments in the fine-tuning of AU activation or their personalization to user preferred modalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信