多元Hawkes过程的完美抽样

Xinyun Chen, Xiuwen Wang
{"title":"多元Hawkes过程的完美抽样","authors":"Xinyun Chen, Xiuwen Wang","doi":"10.1109/WSC48552.2020.9384038","DOIUrl":null,"url":null,"abstract":"As an extension of self-exciting Hawkes process, the multivariate Hawkes process models counting processes of different types of random events with mutual excitement. In this paper, we present a perfect sampling algorithm that can generate i.i.d. stationary sample paths of multivariate Hawkes process without any transient bias. In addition, we provide an explicit expression of algorithm complexity in model and algorithm parameters and provide numerical schemes to find the optimal parameter set that minimizes the complexity of the perfect sampling algorithm.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"3 1","pages":"469-480"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Perfect Sampling of Multivariate Hawkes Processes\",\"authors\":\"Xinyun Chen, Xiuwen Wang\",\"doi\":\"10.1109/WSC48552.2020.9384038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an extension of self-exciting Hawkes process, the multivariate Hawkes process models counting processes of different types of random events with mutual excitement. In this paper, we present a perfect sampling algorithm that can generate i.i.d. stationary sample paths of multivariate Hawkes process without any transient bias. In addition, we provide an explicit expression of algorithm complexity in model and algorithm parameters and provide numerical schemes to find the optimal parameter set that minimizes the complexity of the perfect sampling algorithm.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"3 1\",\"pages\":\"469-480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多元Hawkes过程作为自激Hawkes过程的扩展,对不同类型的随机事件的计数过程进行了模型化,并具有互激性。本文提出了一种完美的采样算法,该算法可以在不存在瞬态偏差的情况下生成多元Hawkes过程的平稳采样路径。此外,我们在模型和算法参数中提供了算法复杂度的显式表达式,并提供了寻找使完美采样算法的复杂度最小化的最优参数集的数值方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfect Sampling of Multivariate Hawkes Processes
As an extension of self-exciting Hawkes process, the multivariate Hawkes process models counting processes of different types of random events with mutual excitement. In this paper, we present a perfect sampling algorithm that can generate i.i.d. stationary sample paths of multivariate Hawkes process without any transient bias. In addition, we provide an explicit expression of algorithm complexity in model and algorithm parameters and provide numerical schemes to find the optimal parameter set that minimizes the complexity of the perfect sampling algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信