{"title":"激光诱导锗外介子、真空火花和真空电弧的带电粒子发射","authors":"V. Porshyn","doi":"10.1063/5.0012727","DOIUrl":null,"url":null,"abstract":"The highly resolved temporal evolution of laser-induced micro-explosions on a germanium surface is studied in a triode configuration for various gate charge levels and cathode currents. Electron emission from individual spots is directly imaged with a luminescence screen, showing that the opening angle of the source is about 30$^\\circ$. Electron bunches of several nanocoulombs per pulse in a time interval of about 150 ns are directly extracted to the anode without vacuum breakdown in the cathodic gap. When breakdown occurs, a remarkable change in the arc behavior of a threshold gap potential of around 1 kV is observed, which hints at two different evaporation mechanisms that depend on the cathodic fall of an individual spot. Therefore, for voltages well above the threshold, a fast gate discharge is observed within the first 100-200 ns, followed by fundamental plasma oscillations and an electron emission of several $\\mu$C per pulse from the plasma boundary. Additionally, highly efficient emission of germanium ion clusters occurs, evidencing a stable two-fold electron multiplication in the plasma, with a charge of several $\\mu$C per pulse below the threshold.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emission of charged particles from laser-induced germanium ecton, vacuum spark, and vacuum arc\",\"authors\":\"V. Porshyn\",\"doi\":\"10.1063/5.0012727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The highly resolved temporal evolution of laser-induced micro-explosions on a germanium surface is studied in a triode configuration for various gate charge levels and cathode currents. Electron emission from individual spots is directly imaged with a luminescence screen, showing that the opening angle of the source is about 30$^\\\\circ$. Electron bunches of several nanocoulombs per pulse in a time interval of about 150 ns are directly extracted to the anode without vacuum breakdown in the cathodic gap. When breakdown occurs, a remarkable change in the arc behavior of a threshold gap potential of around 1 kV is observed, which hints at two different evaporation mechanisms that depend on the cathodic fall of an individual spot. Therefore, for voltages well above the threshold, a fast gate discharge is observed within the first 100-200 ns, followed by fundamental plasma oscillations and an electron emission of several $\\\\mu$C per pulse from the plasma boundary. Additionally, highly efficient emission of germanium ion clusters occurs, evidencing a stable two-fold electron multiplication in the plasma, with a charge of several $\\\\mu$C per pulse below the threshold.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0012727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0012727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emission of charged particles from laser-induced germanium ecton, vacuum spark, and vacuum arc
The highly resolved temporal evolution of laser-induced micro-explosions on a germanium surface is studied in a triode configuration for various gate charge levels and cathode currents. Electron emission from individual spots is directly imaged with a luminescence screen, showing that the opening angle of the source is about 30$^\circ$. Electron bunches of several nanocoulombs per pulse in a time interval of about 150 ns are directly extracted to the anode without vacuum breakdown in the cathodic gap. When breakdown occurs, a remarkable change in the arc behavior of a threshold gap potential of around 1 kV is observed, which hints at two different evaporation mechanisms that depend on the cathodic fall of an individual spot. Therefore, for voltages well above the threshold, a fast gate discharge is observed within the first 100-200 ns, followed by fundamental plasma oscillations and an electron emission of several $\mu$C per pulse from the plasma boundary. Additionally, highly efficient emission of germanium ion clusters occurs, evidencing a stable two-fold electron multiplication in the plasma, with a charge of several $\mu$C per pulse below the threshold.