{"title":"通过裁剪特征规范防御通用对抗性补丁","authors":"Cheng Yu, Jiansheng Chen, Youze Xue, Yuyang Liu, Weitao Wan, Jiayu Bao, Huimin Ma","doi":"10.1109/ICCV48922.2021.01612","DOIUrl":null,"url":null,"abstract":"Physical-world adversarial attacks based on universal adversarial patches have been proved to be able to mislead deep convolutional neural networks (CNNs), exposing the vulnerability of real-world visual classification systems based on CNNs. In this paper, we empirically reveal and mathematically explain that the universal adversarial patches usually lead to deep feature vectors with very large norms in popular CNNs. Inspired by this, we propose a simple yet effective defending approach using a new feature norm clipping (FNC) layer which is a differentiable module that can be flexibly inserted in different CNNs to adaptively suppress the generation of large norm deep feature vectors. FNC introduces no trainable parameter and only very low computational overhead. However, experiments on multiple datasets validate that it can effectively improve the robustness of different CNNs towards white-box universal patch attacks while maintaining a satisfactory recognition accuracy for clean samples.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"16414-16422"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Defending against Universal Adversarial Patches by Clipping Feature Norms\",\"authors\":\"Cheng Yu, Jiansheng Chen, Youze Xue, Yuyang Liu, Weitao Wan, Jiayu Bao, Huimin Ma\",\"doi\":\"10.1109/ICCV48922.2021.01612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical-world adversarial attacks based on universal adversarial patches have been proved to be able to mislead deep convolutional neural networks (CNNs), exposing the vulnerability of real-world visual classification systems based on CNNs. In this paper, we empirically reveal and mathematically explain that the universal adversarial patches usually lead to deep feature vectors with very large norms in popular CNNs. Inspired by this, we propose a simple yet effective defending approach using a new feature norm clipping (FNC) layer which is a differentiable module that can be flexibly inserted in different CNNs to adaptively suppress the generation of large norm deep feature vectors. FNC introduces no trainable parameter and only very low computational overhead. However, experiments on multiple datasets validate that it can effectively improve the robustness of different CNNs towards white-box universal patch attacks while maintaining a satisfactory recognition accuracy for clean samples.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"1 1\",\"pages\":\"16414-16422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defending against Universal Adversarial Patches by Clipping Feature Norms
Physical-world adversarial attacks based on universal adversarial patches have been proved to be able to mislead deep convolutional neural networks (CNNs), exposing the vulnerability of real-world visual classification systems based on CNNs. In this paper, we empirically reveal and mathematically explain that the universal adversarial patches usually lead to deep feature vectors with very large norms in popular CNNs. Inspired by this, we propose a simple yet effective defending approach using a new feature norm clipping (FNC) layer which is a differentiable module that can be flexibly inserted in different CNNs to adaptively suppress the generation of large norm deep feature vectors. FNC introduces no trainable parameter and only very low computational overhead. However, experiments on multiple datasets validate that it can effectively improve the robustness of different CNNs towards white-box universal patch attacks while maintaining a satisfactory recognition accuracy for clean samples.