基于强化学习的自适应模型选择在光子库计算中的实验证明

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ryohei Mito, Kazutaka Kanno, M. Naruse, A. Uchida
{"title":"基于强化学习的自适应模型选择在光子库计算中的实验证明","authors":"Ryohei Mito, Kazutaka Kanno, M. Naruse, A. Uchida","doi":"10.1587/nolta.13.123","DOIUrl":null,"url":null,"abstract":": Reservoir computing provides superior information processing ability for a time series prediction based on appropriate learning prior to task execution. The performance of reservoir computing, however, may degrade if the characteristics of the input signal drastically change over time because the internal model of reservoir computing deviates from the subjected input signal trains. We propose a method for adaptive model selection using reinforcement learning in electro-optic delay-based reservoir computing. We experimentally show that an adaptive model selection is effective when different dynamical models for the input signals change dynamically over time.","PeriodicalId":54110,"journal":{"name":"IEICE Nonlinear Theory and Its Applications","volume":"13 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental demonstration of adaptive model selection based on reinforcement learning in photonic reservoir computing\",\"authors\":\"Ryohei Mito, Kazutaka Kanno, M. Naruse, A. Uchida\",\"doi\":\"10.1587/nolta.13.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Reservoir computing provides superior information processing ability for a time series prediction based on appropriate learning prior to task execution. The performance of reservoir computing, however, may degrade if the characteristics of the input signal drastically change over time because the internal model of reservoir computing deviates from the subjected input signal trains. We propose a method for adaptive model selection using reinforcement learning in electro-optic delay-based reservoir computing. We experimentally show that an adaptive model selection is effective when different dynamical models for the input signals change dynamically over time.\",\"PeriodicalId\":54110,\"journal\":{\"name\":\"IEICE Nonlinear Theory and Its Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Nonlinear Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/nolta.13.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Nonlinear Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/nolta.13.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

:基于任务执行前的适当学习,油藏计算为时间序列预测提供了优越的信息处理能力。然而,如果输入信号的特征随着时间的推移而急剧变化,由于油藏计算的内部模型偏离了受影响的输入信号序列,油藏计算的性能可能会下降。提出了一种基于电光延迟油藏计算的强化学习自适应模型选择方法。实验表明,当输入信号的不同动态模型随时间动态变化时,自适应模型选择是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental demonstration of adaptive model selection based on reinforcement learning in photonic reservoir computing
: Reservoir computing provides superior information processing ability for a time series prediction based on appropriate learning prior to task execution. The performance of reservoir computing, however, may degrade if the characteristics of the input signal drastically change over time because the internal model of reservoir computing deviates from the subjected input signal trains. We propose a method for adaptive model selection using reinforcement learning in electro-optic delay-based reservoir computing. We experimentally show that an adaptive model selection is effective when different dynamical models for the input signals change dynamically over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Nonlinear Theory and Its Applications
IEICE Nonlinear Theory and Its Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
20.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信