采用发散光束和合成孔径方法的低成本超声系统的设计:初步研究

B. Lokesh, A. Thittai
{"title":"采用发散光束和合成孔径方法的低成本超声系统的设计:初步研究","authors":"B. Lokesh, A. Thittai","doi":"10.1109/ISBI.2017.7950710","DOIUrl":null,"url":null,"abstract":"In this paper, a new method inspired by the synthetic aperture approach is proposed that aims at reducing the system's complexity (only 8 or 16 active elements) without compromising the image quality, and at frame rates comparable to or higher than conventional focused linear array technique. The novel method has been investigated in simulations using Field II software and experiments performed on a wire phantom using an ultrasound scanner. Results show that the proposed method provides better Lateral Resolution (LR) to that obtained when conventional focused linear array technique is used. The estimated LR at the focal point was 1.09 mm and 0.29 mm for conventional and the proposed method, respectively, in simulations. These were estimated to be 1.03 mm and 0.38 mm, respectively, in experiments. The image quality is shown to improve further when sign coherence factor weighting is incorporated during beamforming.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of a low cost ultrasound system using diverging beams and synthetic aperture approach: Preliminary study\",\"authors\":\"B. Lokesh, A. Thittai\",\"doi\":\"10.1109/ISBI.2017.7950710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method inspired by the synthetic aperture approach is proposed that aims at reducing the system's complexity (only 8 or 16 active elements) without compromising the image quality, and at frame rates comparable to or higher than conventional focused linear array technique. The novel method has been investigated in simulations using Field II software and experiments performed on a wire phantom using an ultrasound scanner. Results show that the proposed method provides better Lateral Resolution (LR) to that obtained when conventional focused linear array technique is used. The estimated LR at the focal point was 1.09 mm and 0.29 mm for conventional and the proposed method, respectively, in simulations. These were estimated to be 1.03 mm and 0.38 mm, respectively, in experiments. The image quality is shown to improve further when sign coherence factor weighting is incorporated during beamforming.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种受合成孔径方法启发的新方法,旨在降低系统的复杂性(只有8或16个有效元件)而不影响图像质量,并且帧率与传统聚焦线性阵列技术相当或更高。这种新方法已经在Field II软件的模拟中进行了研究,并在使用超声扫描仪的金属丝幻影上进行了实验。结果表明,与传统聚焦线阵技术相比,该方法具有更好的横向分辨率。在模拟中,传统方法和本文提出的方法在焦点处的估计LR分别为1.09 mm和0.29 mm。在实验中分别估计为1.03毫米和0.38毫米。在波束形成过程中加入符号相干系数加权后,图像质量得到进一步改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a low cost ultrasound system using diverging beams and synthetic aperture approach: Preliminary study
In this paper, a new method inspired by the synthetic aperture approach is proposed that aims at reducing the system's complexity (only 8 or 16 active elements) without compromising the image quality, and at frame rates comparable to or higher than conventional focused linear array technique. The novel method has been investigated in simulations using Field II software and experiments performed on a wire phantom using an ultrasound scanner. Results show that the proposed method provides better Lateral Resolution (LR) to that obtained when conventional focused linear array technique is used. The estimated LR at the focal point was 1.09 mm and 0.29 mm for conventional and the proposed method, respectively, in simulations. These were estimated to be 1.03 mm and 0.38 mm, respectively, in experiments. The image quality is shown to improve further when sign coherence factor weighting is incorporated during beamforming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信