物联网通信协议的并发传输

Martina Brachmann, O. Landsiedel, S. Santini
{"title":"物联网通信协议的并发传输","authors":"Martina Brachmann, O. Landsiedel, S. Santini","doi":"10.1109/LCN.2016.69","DOIUrl":null,"url":null,"abstract":"Standard Internet communication protocols are key enablers for the Internet of Things (IoT). Recent technological advances have made it possible to run such protocols on resource-constrained devices. Yet these devices often use energy-efficient, low-level communication technologies, like IEEE 802.15.4, which suffer from low-reliability and high latency. These drawbacks can be significantly reduced if communication occurs using concurrent transmissions - a novel communication paradigm for resource-constrained devices. In this paper, we show that Internet protocols like TCP/UDP and CoAP can run efficiently on top of a routing substrate based on concurrent transmissions. We call this substrate LaneFlood and demonstrate its effectiveness through extensive experiments on Flocklab, a publicly available testbed. Our results show that LaneFlood improves upon CXFS - a representative competitor - in terms of both duty cycle and reliability. Furthermore, LaneFlood can transport IoT traffic with an end-to-end latency of less than 300 ms over several hops.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"30 1","pages":"406-414"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Concurrent Transmissions for Communication Protocols in the Internet of Things\",\"authors\":\"Martina Brachmann, O. Landsiedel, S. Santini\",\"doi\":\"10.1109/LCN.2016.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard Internet communication protocols are key enablers for the Internet of Things (IoT). Recent technological advances have made it possible to run such protocols on resource-constrained devices. Yet these devices often use energy-efficient, low-level communication technologies, like IEEE 802.15.4, which suffer from low-reliability and high latency. These drawbacks can be significantly reduced if communication occurs using concurrent transmissions - a novel communication paradigm for resource-constrained devices. In this paper, we show that Internet protocols like TCP/UDP and CoAP can run efficiently on top of a routing substrate based on concurrent transmissions. We call this substrate LaneFlood and demonstrate its effectiveness through extensive experiments on Flocklab, a publicly available testbed. Our results show that LaneFlood improves upon CXFS - a representative competitor - in terms of both duty cycle and reliability. Furthermore, LaneFlood can transport IoT traffic with an end-to-end latency of less than 300 ms over several hops.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"30 1\",\"pages\":\"406-414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

标准的互联网通信协议是物联网(IoT)的关键推动者。最近的技术进步使得在资源受限的设备上运行这样的协议成为可能。然而,这些设备通常使用节能、低级的通信技术,如IEEE 802.15.4,存在低可靠性和高延迟的问题。如果使用并发传输(一种用于资源受限设备的新型通信范例)进行通信,则可以显著减少这些缺点。在本文中,我们展示了像TCP/UDP和CoAP这样的互联网协议可以在基于并发传输的路由基板上有效地运行。我们称这种基板为lanefood,并通过在Flocklab(一个公开可用的测试平台)上进行大量实验来证明其有效性。我们的研究结果表明,lanefood在占空比和可靠性方面都优于CXFS(一个代表性的竞争对手)。此外,lanefflood可以在几跳之间以小于300毫秒的端到端延迟传输物联网流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent Transmissions for Communication Protocols in the Internet of Things
Standard Internet communication protocols are key enablers for the Internet of Things (IoT). Recent technological advances have made it possible to run such protocols on resource-constrained devices. Yet these devices often use energy-efficient, low-level communication technologies, like IEEE 802.15.4, which suffer from low-reliability and high latency. These drawbacks can be significantly reduced if communication occurs using concurrent transmissions - a novel communication paradigm for resource-constrained devices. In this paper, we show that Internet protocols like TCP/UDP and CoAP can run efficiently on top of a routing substrate based on concurrent transmissions. We call this substrate LaneFlood and demonstrate its effectiveness through extensive experiments on Flocklab, a publicly available testbed. Our results show that LaneFlood improves upon CXFS - a representative competitor - in terms of both duty cycle and reliability. Furthermore, LaneFlood can transport IoT traffic with an end-to-end latency of less than 300 ms over several hops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信