J. Interlando, José Othon Dantas Lopes, T. P. D. N. Neto
{"title":"$ d_4 $-格的一个新的数域构造","authors":"J. Interlando, José Othon Dantas Lopes, T. P. D. N. Neto","doi":"10.12732/IJAM.V31I2.11","DOIUrl":null,"url":null,"abstract":"A classical problem in lattice theory is to determine whether a given lattice can be realized as OK -lattice, where OK is the ring of integers of some number field K. In this work we show that the lattice D4 can be realized as an OF -lattice for infinitely many totally real biquadratic fields F . AMS Subject Classification: 11H06, 11H31, 11R16","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"42 1","pages":"299-305"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A NEW NUMBER FIELD CONSTRUCTION OF THE $D_4$-LATTICE\",\"authors\":\"J. Interlando, José Othon Dantas Lopes, T. P. D. N. Neto\",\"doi\":\"10.12732/IJAM.V31I2.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical problem in lattice theory is to determine whether a given lattice can be realized as OK -lattice, where OK is the ring of integers of some number field K. In this work we show that the lattice D4 can be realized as an OF -lattice for infinitely many totally real biquadratic fields F . AMS Subject Classification: 11H06, 11H31, 11R16\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"42 1\",\"pages\":\"299-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12732/IJAM.V31I2.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12732/IJAM.V31I2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A NEW NUMBER FIELD CONSTRUCTION OF THE $D_4$-LATTICE
A classical problem in lattice theory is to determine whether a given lattice can be realized as OK -lattice, where OK is the ring of integers of some number field K. In this work we show that the lattice D4 can be realized as an OF -lattice for infinitely many totally real biquadratic fields F . AMS Subject Classification: 11H06, 11H31, 11R16