{"title":"半圆和圆元强收敛量子通道的可加性破坏","authors":"M. Fukuda, Takahiro Hasebe, Shinya Sato","doi":"10.1142/s2010326322500125","DOIUrl":null,"url":null,"abstract":"Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additivity violation of quantum channels via strong convergence to semi-circular and circular elements\",\"authors\":\"M. Fukuda, Takahiro Hasebe, Shinya Sato\",\"doi\":\"10.1142/s2010326322500125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additivity violation of quantum channels via strong convergence to semi-circular and circular elements
Additivity violation of minimum output entropy, which shows non-classical properties in quantum communication, had been proved in most cases for random quantum channels defined by Haar-distributed unitary matrices. In this paper, we investigate random completely positive maps made of Gaussian Unitary Ensembles and Ginibre Ensembles regarding this matter. Using semi-circular systems and circular systems of free probability, we not only show the multiplicativity violation of maximum output norms in the asymptotic regimes but also prove the additivity violation via Haagerup inequality for a new class of random quantum channels constructed by rectifying the above completely positive maps based on strong convergence.