预测信息建模:材料不确定性的机器学习策略

IF 0.5 0 ARCHITECTURE
Vasiliki Fragkia, I. Foged, Anke Pasold
{"title":"预测信息建模:材料不确定性的机器学习策略","authors":"Vasiliki Fragkia, I. Foged, Anke Pasold","doi":"10.1080/24751448.2021.1967057","DOIUrl":null,"url":null,"abstract":"This article presents a new design framework for the specification and prototyping of geometrically and behaviorally complex materials with graded properties, coined predictive information modeling (PIM). The contribution is the development of new circular design workflows employing machine learning for predicting fabrication files based on performance and design requirements. The aim is linking endogenous capacities as well as exogenous environmental dynamics of graded materials, as an approach to material focused intelligent design systems. Using two experimental case studies, the research demonstrates PIM as an applied design framework for addressing (1) material uncertainty, (2) multi-scale data integration, and (3) cyclical fabrication workflows. Through the analysis of these models, we demonstrate research methods that are validated for design applications, review their implications, and discuss further trajectories.","PeriodicalId":36812,"journal":{"name":"Technology Architecture and Design","volume":"35 1","pages":"163 - 176"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predictive Information Modeling: Machine Learning Strategies for Material Uncertainty\",\"authors\":\"Vasiliki Fragkia, I. Foged, Anke Pasold\",\"doi\":\"10.1080/24751448.2021.1967057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a new design framework for the specification and prototyping of geometrically and behaviorally complex materials with graded properties, coined predictive information modeling (PIM). The contribution is the development of new circular design workflows employing machine learning for predicting fabrication files based on performance and design requirements. The aim is linking endogenous capacities as well as exogenous environmental dynamics of graded materials, as an approach to material focused intelligent design systems. Using two experimental case studies, the research demonstrates PIM as an applied design framework for addressing (1) material uncertainty, (2) multi-scale data integration, and (3) cyclical fabrication workflows. Through the analysis of these models, we demonstrate research methods that are validated for design applications, review their implications, and discuss further trajectories.\",\"PeriodicalId\":36812,\"journal\":{\"name\":\"Technology Architecture and Design\",\"volume\":\"35 1\",\"pages\":\"163 - 176\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology Architecture and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751448.2021.1967057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology Architecture and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751448.2021.1967057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的设计框架,用于具有梯度性能的几何和行为复杂材料的规格和原型设计,即预测信息建模(PIM)。其贡献是开发了新的循环设计工作流程,采用机器学习来预测基于性能和设计要求的制造文件。目的是连接内源性能力以及外源性环境动态的梯度材料,作为一种方法,以材料为中心的智能设计系统。通过两个实验案例研究,该研究证明PIM是解决(1)材料不确定性、(2)多尺度数据集成和(3)周期性制造工作流的应用设计框架。通过对这些模型的分析,我们展示了在设计应用中得到验证的研究方法,回顾了它们的含义,并讨论了进一步的发展轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Information Modeling: Machine Learning Strategies for Material Uncertainty
This article presents a new design framework for the specification and prototyping of geometrically and behaviorally complex materials with graded properties, coined predictive information modeling (PIM). The contribution is the development of new circular design workflows employing machine learning for predicting fabrication files based on performance and design requirements. The aim is linking endogenous capacities as well as exogenous environmental dynamics of graded materials, as an approach to material focused intelligent design systems. Using two experimental case studies, the research demonstrates PIM as an applied design framework for addressing (1) material uncertainty, (2) multi-scale data integration, and (3) cyclical fabrication workflows. Through the analysis of these models, we demonstrate research methods that are validated for design applications, review their implications, and discuss further trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology Architecture and Design
Technology Architecture and Design Arts and Humanities-Visual Arts and Performing Arts
CiteScore
1.30
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信