{"title":"H-Revolve","authors":"J. Herrmann, G. Pallez","doi":"10.1145/3378672","DOIUrl":null,"url":null,"abstract":"We study the problem of checkpointing strategies for adjoint computation on synchronous hierarchical platforms, specifically computational platforms with several levels of storage with different writing and reading costs. When reversing a large adjoint chain, choosing which data to checkpoint and where is a critical decision for the overall performance of the computation. We introduce H-Revolve, an optimal algorithm for this problem. We make it available in a public Python library along with the implementation of several state-of-the-art algorithms for the variant of the problem with two levels of storage. We provide a detailed description of how one can use this library in an adjoint computation software in the field of automatic differentiation or backpropagation. Finally, we evaluate the performance of H-Revolve and other checkpointing heuristics though an extensive campaign of simulation.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"2 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"H-Revolve\",\"authors\":\"J. Herrmann, G. Pallez\",\"doi\":\"10.1145/3378672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of checkpointing strategies for adjoint computation on synchronous hierarchical platforms, specifically computational platforms with several levels of storage with different writing and reading costs. When reversing a large adjoint chain, choosing which data to checkpoint and where is a critical decision for the overall performance of the computation. We introduce H-Revolve, an optimal algorithm for this problem. We make it available in a public Python library along with the implementation of several state-of-the-art algorithms for the variant of the problem with two levels of storage. We provide a detailed description of how one can use this library in an adjoint computation software in the field of automatic differentiation or backpropagation. Finally, we evaluate the performance of H-Revolve and other checkpointing heuristics though an extensive campaign of simulation.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"2 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the problem of checkpointing strategies for adjoint computation on synchronous hierarchical platforms, specifically computational platforms with several levels of storage with different writing and reading costs. When reversing a large adjoint chain, choosing which data to checkpoint and where is a critical decision for the overall performance of the computation. We introduce H-Revolve, an optimal algorithm for this problem. We make it available in a public Python library along with the implementation of several state-of-the-art algorithms for the variant of the problem with two levels of storage. We provide a detailed description of how one can use this library in an adjoint computation software in the field of automatic differentiation or backpropagation. Finally, we evaluate the performance of H-Revolve and other checkpointing heuristics though an extensive campaign of simulation.