基于网络的智能医疗中使用随机森林方法的心电图信号分类

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juni Nurma Sari, Putri Madona, Hari Kusryanto, Muhammad Mahrus Zain, May Valzon
{"title":"基于网络的智能医疗中使用随机森林方法的心电图信号分类","authors":"Juni Nurma Sari, Putri Madona, Hari Kusryanto, Muhammad Mahrus Zain, May Valzon","doi":"10.11591/ijaas.v12.i2.pp133-143","DOIUrl":null,"url":null,"abstract":"Coronary heart is the highest cause of death in Indonesia reaching 26%. Therefore, to prevent the high mortality rate of coronary heart disease (CHD), early detection of CHD can be carried out. One way is to examine the electrocardiogram/electrocardiograph (ECG) recording. ECG hardware has been made in previous studies to record ECG signals. ECG research is an important study because it can detect cardiovascular disease. Cardiovascular diseases can be classified as arrhythmic diseases. Arrhythmia is a disorder that occurs in the heart rhythm. The method used to recognize and classify ECG signal patterns is the R-R interval (RRI) method. In this study, the ECG signal is classified as normal and abnormal. Abnormal means that a person has a heart rhythm disorder. The classification method used is random forest. The advantage of the random forest classifier is that it can handle noise and missing values and can handle large amounts of data. The accuracy of the ECG signal classification using the Random forest method is 96%. The contribution of this research is that early detection of heart rhythm disorders using an ECG can be monitored through the smart healthcare web.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocardiogram signals classification using random forest method for web-based smart healthcare\",\"authors\":\"Juni Nurma Sari, Putri Madona, Hari Kusryanto, Muhammad Mahrus Zain, May Valzon\",\"doi\":\"10.11591/ijaas.v12.i2.pp133-143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coronary heart is the highest cause of death in Indonesia reaching 26%. Therefore, to prevent the high mortality rate of coronary heart disease (CHD), early detection of CHD can be carried out. One way is to examine the electrocardiogram/electrocardiograph (ECG) recording. ECG hardware has been made in previous studies to record ECG signals. ECG research is an important study because it can detect cardiovascular disease. Cardiovascular diseases can be classified as arrhythmic diseases. Arrhythmia is a disorder that occurs in the heart rhythm. The method used to recognize and classify ECG signal patterns is the R-R interval (RRI) method. In this study, the ECG signal is classified as normal and abnormal. Abnormal means that a person has a heart rhythm disorder. The classification method used is random forest. The advantage of the random forest classifier is that it can handle noise and missing values and can handle large amounts of data. The accuracy of the ECG signal classification using the Random forest method is 96%. The contribution of this research is that early detection of heart rhythm disorders using an ECG can be monitored through the smart healthcare web.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v12.i2.pp133-143\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v12.i2.pp133-143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

冠心病是印度尼西亚最高的死亡原因,占26%。因此,为了预防冠心病的高死亡率,可以进行冠心病的早期检测。一种方法是检查心电图(ECG)记录。在以往的研究中,已经制作了心电硬件来记录心电信号。心电图的研究是一项重要的研究,因为它可以检测心血管疾病。心血管疾病可归类为心律失常疾病。心律失常是一种心律失常。用于心电信号模式识别和分类的方法是R-R区间(RRI)方法。本研究将心电信号分为正常和异常。非正常是指一个人有心律紊乱。使用的分类方法是随机森林。随机森林分类器的优点是它可以处理噪声和缺失值,并且可以处理大量数据。采用随机森林方法对心电信号进行分类,准确率达96%。这项研究的贡献是,可以通过智能医疗网络监测使用心电图的心律失常的早期检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocardiogram signals classification using random forest method for web-based smart healthcare
Coronary heart is the highest cause of death in Indonesia reaching 26%. Therefore, to prevent the high mortality rate of coronary heart disease (CHD), early detection of CHD can be carried out. One way is to examine the electrocardiogram/electrocardiograph (ECG) recording. ECG hardware has been made in previous studies to record ECG signals. ECG research is an important study because it can detect cardiovascular disease. Cardiovascular diseases can be classified as arrhythmic diseases. Arrhythmia is a disorder that occurs in the heart rhythm. The method used to recognize and classify ECG signal patterns is the R-R interval (RRI) method. In this study, the ECG signal is classified as normal and abnormal. Abnormal means that a person has a heart rhythm disorder. The classification method used is random forest. The advantage of the random forest classifier is that it can handle noise and missing values and can handle large amounts of data. The accuracy of the ECG signal classification using the Random forest method is 96%. The contribution of this research is that early detection of heart rhythm disorders using an ECG can be monitored through the smart healthcare web.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信