一种有效的消息传递算法用于NOMA中主动用户检测和信道估计

Weijia Dai, Haichao Wei, Jiaxi Zhou, Wuyang Zhou
{"title":"一种有效的消息传递算法用于NOMA中主动用户检测和信道估计","authors":"Weijia Dai, Haichao Wei, Jiaxi Zhou, Wuyang Zhou","doi":"10.1109/VTCFall.2019.8891539","DOIUrl":null,"url":null,"abstract":"In 5G wireless communication network, massive machine type communication (mMTC) is an emerging research topic. For mMTC, non-orthogonal multiple access (NOMA) has been proposed to support its large-scale connectivity. Due to the sparsity of mMTC, compressed sensing based algorithms can be used to identify the active users and recover the sparse channel state information (CSI) vector. In this paper, we propose a Bayesian message passing algorithm based on expectation propagation (EP) for joint active user detection (AUD) and channel estimation (CE) in NOMA. The proposed method approximates the complicated target distribution with a Gaussian distribution to achieve linear complexity. Simulations demonstrate that the EP-based algorithm achieves better performance in joint AUD and CE than the exiting algorithms, especially in the low SNR regime.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Efficient Message Passing Algorithm for Active User Detection and Channel Estimation in NOMA\",\"authors\":\"Weijia Dai, Haichao Wei, Jiaxi Zhou, Wuyang Zhou\",\"doi\":\"10.1109/VTCFall.2019.8891539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 5G wireless communication network, massive machine type communication (mMTC) is an emerging research topic. For mMTC, non-orthogonal multiple access (NOMA) has been proposed to support its large-scale connectivity. Due to the sparsity of mMTC, compressed sensing based algorithms can be used to identify the active users and recover the sparse channel state information (CSI) vector. In this paper, we propose a Bayesian message passing algorithm based on expectation propagation (EP) for joint active user detection (AUD) and channel estimation (CE) in NOMA. The proposed method approximates the complicated target distribution with a Gaussian distribution to achieve linear complexity. Simulations demonstrate that the EP-based algorithm achieves better performance in joint AUD and CE than the exiting algorithms, especially in the low SNR regime.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"31 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8891539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在5G无线通信网络中,海量机器类型通信(mMTC)是一个新兴的研究课题。对于mMTC,为了支持其大规模连接,提出了非正交多址(NOMA)技术。由于mMTC的稀疏性,基于压缩感知的算法可以用来识别活跃用户并恢复稀疏信道状态信息(CSI)向量。本文提出了一种基于期望传播(EP)的贝叶斯消息传递算法,用于联合主动用户检测(AUD)和信道估计(CE)。该方法将复杂目标的分布近似为高斯分布,达到线性复杂度。仿真结果表明,基于ep的算法在联合AUD和CE下的性能优于现有算法,特别是在低信噪比条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Message Passing Algorithm for Active User Detection and Channel Estimation in NOMA
In 5G wireless communication network, massive machine type communication (mMTC) is an emerging research topic. For mMTC, non-orthogonal multiple access (NOMA) has been proposed to support its large-scale connectivity. Due to the sparsity of mMTC, compressed sensing based algorithms can be used to identify the active users and recover the sparse channel state information (CSI) vector. In this paper, we propose a Bayesian message passing algorithm based on expectation propagation (EP) for joint active user detection (AUD) and channel estimation (CE) in NOMA. The proposed method approximates the complicated target distribution with a Gaussian distribution to achieve linear complexity. Simulations demonstrate that the EP-based algorithm achieves better performance in joint AUD and CE than the exiting algorithms, especially in the low SNR regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信