{"title":"不变连接,李代数作用,流形上数值积分的基础","authors":"H. Munthe-Kaas, A. Stern, Olivier Verdier","doi":"10.1137/19M1252879","DOIUrl":null,"url":null,"abstract":"Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Invariant Connections, Lie Algebra Actions, and Foundations of Numerical Integration on Manifolds\",\"authors\":\"H. Munthe-Kaas, A. Stern, Olivier Verdier\",\"doi\":\"10.1137/19M1252879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19M1252879\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19M1252879","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Invariant Connections, Lie Algebra Actions, and Foundations of Numerical Integration on Manifolds
Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...