不变连接,李代数作用,流形上数值积分的基础

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
H. Munthe-Kaas, A. Stern, Olivier Verdier
{"title":"不变连接,李代数作用,流形上数值积分的基础","authors":"H. Munthe-Kaas, A. Stern, Olivier Verdier","doi":"10.1137/19M1252879","DOIUrl":null,"url":null,"abstract":"Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Invariant Connections, Lie Algebra Actions, and Foundations of Numerical Integration on Manifolds\",\"authors\":\"H. Munthe-Kaas, A. Stern, Olivier Verdier\",\"doi\":\"10.1137/19M1252879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/19M1252879\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19M1252879","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

在流形上的数值积分的激励下,我们将不变连接的代数性质与其几何性质联系起来。利用这一观点,我们总结了一些经典的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant Connections, Lie Algebra Actions, and Foundations of Numerical Integration on Manifolds
Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical resu...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信