最小独立支配集问题的有效局部搜索

Kazuya Haraguchi
{"title":"最小独立支配集问题的有效局部搜索","authors":"Kazuya Haraguchi","doi":"10.4230/LIPIcs.SEA.2018.13","DOIUrl":null,"url":null,"abstract":"In the present paper, we propose an efficient local search for the minimum independent dominating set problem. We consider a local search that uses k-swap as the neighborhood operation. Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping exactly k vertices from S and then by adding any number of vertices to it. We show that, when k=2, (resp., k=3 and a given solution is minimal with respect to 2-swap), we can find an improved solution in the neighborhood or conclude that no such solution exists in O(n\\Delta) (resp., O(n\\Delta^3)) time, where n denotes the number of vertices and \\Delta denotes the maximum degree. We develop a metaheuristic algorithm that repeats the proposed local search and the plateau search iteratively. The algorithm is so effective that it updates the best-known upper bound for nine DIMACS graphs.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"83 1","pages":"13:1-13:13"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Local Search for the Minimum Independent Dominating Set Problem\",\"authors\":\"Kazuya Haraguchi\",\"doi\":\"10.4230/LIPIcs.SEA.2018.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we propose an efficient local search for the minimum independent dominating set problem. We consider a local search that uses k-swap as the neighborhood operation. Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping exactly k vertices from S and then by adding any number of vertices to it. We show that, when k=2, (resp., k=3 and a given solution is minimal with respect to 2-swap), we can find an improved solution in the neighborhood or conclude that no such solution exists in O(n\\\\Delta) (resp., O(n\\\\Delta^3)) time, where n denotes the number of vertices and \\\\Delta denotes the maximum degree. We develop a metaheuristic algorithm that repeats the proposed local search and the plateau search iteratively. The algorithm is so effective that it updates the best-known upper bound for nine DIMACS graphs.\",\"PeriodicalId\":9448,\"journal\":{\"name\":\"Bulletin of the Society of Sea Water Science, Japan\",\"volume\":\"83 1\",\"pages\":\"13:1-13:13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Society of Sea Water Science, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SEA.2018.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2018.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解最小独立支配集问题的一种有效的局部搜索方法。我们考虑使用k-swap作为邻域操作的局部搜索。给定一个可行解S,它是通过从S中去掉恰好k个顶点,然后添加任意数量的顶点来获得另一个可行解的操作。我们证明,当k=2时,(p。, k=3且给定解相对于2-swap是最小的),我们可以在邻域内找到一个改进解或得出在O(n\Delta) (resp)中不存在这样的解的结论。, O(n\Delta^3))时间,其中n表示顶点数,\Delta表示最大度。我们开发了一种元启发式算法,迭代地重复提出的局部搜索和平台搜索。该算法非常有效,它更新了九个DIMACS图的最著名的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Local Search for the Minimum Independent Dominating Set Problem
In the present paper, we propose an efficient local search for the minimum independent dominating set problem. We consider a local search that uses k-swap as the neighborhood operation. Given a feasible solution S, it is the operation of obtaining another feasible solution by dropping exactly k vertices from S and then by adding any number of vertices to it. We show that, when k=2, (resp., k=3 and a given solution is minimal with respect to 2-swap), we can find an improved solution in the neighborhood or conclude that no such solution exists in O(n\Delta) (resp., O(n\Delta^3)) time, where n denotes the number of vertices and \Delta denotes the maximum degree. We develop a metaheuristic algorithm that repeats the proposed local search and the plateau search iteratively. The algorithm is so effective that it updates the best-known upper bound for nine DIMACS graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信