铁磁体一维模型中的相变:转移矩阵方法

J. Martin
{"title":"铁磁体一维模型中的相变:转移矩阵方法","authors":"J. Martin","doi":"10.1088/0305-4470/5/8/010","DOIUrl":null,"url":null,"abstract":"It is shown that a transfer-matrix method provides a particularly direct solution for a ferromagnetic version of a one dimensional model originally invented by Fisher (1967). An essential feature of this model is the many body potential leading to a phase transition. All the thermodynamical properties of the model may be written down once the dominant eigenvalue and eigenvector of the matrix are known; in particular, surface properties may be obtained in terms of the dominant eigenvector. Typical phase diagrams are obtained, and the singularities at the phase boundaries discussed.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"5 1","pages":"1176-1187"},"PeriodicalIF":0.0000,"publicationDate":"1972-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transitions in a one dimensional model of a ferromagnet: a transfer-matrix approach\",\"authors\":\"J. Martin\",\"doi\":\"10.1088/0305-4470/5/8/010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that a transfer-matrix method provides a particularly direct solution for a ferromagnetic version of a one dimensional model originally invented by Fisher (1967). An essential feature of this model is the many body potential leading to a phase transition. All the thermodynamical properties of the model may be written down once the dominant eigenvalue and eigenvector of the matrix are known; in particular, surface properties may be obtained in terms of the dominant eigenvector. Typical phase diagrams are obtained, and the singularities at the phase boundaries discussed.\",\"PeriodicalId\":54612,\"journal\":{\"name\":\"Physics-A Journal of General and Applied Physics\",\"volume\":\"5 1\",\"pages\":\"1176-1187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics-A Journal of General and Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0305-4470/5/8/010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/8/010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结果表明,传递矩阵方法为Fisher(1967)最初发明的一维模型的铁磁版本提供了特别直接的解决方案。该模型的一个基本特征是导致相变的多体电位。只要知道矩阵的显性特征值和特征向量,就可以写出模型的所有热力学性质;特别地,表面性质可以根据显性特征向量得到。得到了典型的相图,并讨论了相边界处的奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transitions in a one dimensional model of a ferromagnet: a transfer-matrix approach
It is shown that a transfer-matrix method provides a particularly direct solution for a ferromagnetic version of a one dimensional model originally invented by Fisher (1967). An essential feature of this model is the many body potential leading to a phase transition. All the thermodynamical properties of the model may be written down once the dominant eigenvalue and eigenvector of the matrix are known; in particular, surface properties may be obtained in terms of the dominant eigenvector. Typical phase diagrams are obtained, and the singularities at the phase boundaries discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信