{"title":"东波希米亚什克拉地块蛇纹橄榄岩两期硅化作用的矿物学和地球化学证据","authors":"B. Cieślik, J. Kierczak, A. Pietranik","doi":"10.2478/mipo-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.","PeriodicalId":18686,"journal":{"name":"Mineralogia","volume":"5 1","pages":"20 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineralogical and geochemical evidence for two-stage silicification of serpentinized peridotites from the Szklary Massif (NE Bohemian Massif)\",\"authors\":\"B. Cieślik, J. Kierczak, A. Pietranik\",\"doi\":\"10.2478/mipo-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.\",\"PeriodicalId\":18686,\"journal\":{\"name\":\"Mineralogia\",\"volume\":\"5 1\",\"pages\":\"20 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mipo-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mipo-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Mineralogical and geochemical evidence for two-stage silicification of serpentinized peridotites from the Szklary Massif (NE Bohemian Massif)
Abstract Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.
期刊介绍:
- original papers in the scope of widely understood mineralogical sciences (mineralogy, petrology, geochemistry, environmental sciences, applied mineralogy etc.) - research articles, short communications, mini-reviews and review articles