高杜川度规的连续性方程

Taotao Zheng
{"title":"高杜川度规的连续性方程","authors":"Taotao Zheng","doi":"10.2140/PJM.2021.310.487","DOIUrl":null,"url":null,"abstract":"We study the continuity equation of the Gauduchon metrics and establish its interval of maximal existence, which extends the continuity equation of the Kahler metrics introduced by La Nave \\& Tian for and of the Hermitian metrics introduced by Sherman \\& Weinkove. Our method is based on the solution to the Gauduchon conjecture by Szekelyhidi, Tosatti \\& Weinkove.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The continuity equation of the Gauduchon metrics\",\"authors\":\"Taotao Zheng\",\"doi\":\"10.2140/PJM.2021.310.487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the continuity equation of the Gauduchon metrics and establish its interval of maximal existence, which extends the continuity equation of the Kahler metrics introduced by La Nave \\\\& Tian for and of the Hermitian metrics introduced by Sherman \\\\& Weinkove. Our method is based on the solution to the Gauduchon conjecture by Szekelyhidi, Tosatti \\\\& Weinkove.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/PJM.2021.310.487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/PJM.2021.310.487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了Gauduchon度量的连续性方程,建立了其极大存在区间,推广了La Nave & Tian引入的Kahler度量对于Sherman & Weinkove引入的hermite度量的连续性方程。我们的方法是基于Szekelyhidi, Tosatti & Weinkove对Gauduchon猜想的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The continuity equation of the Gauduchon metrics
We study the continuity equation of the Gauduchon metrics and establish its interval of maximal existence, which extends the continuity equation of the Kahler metrics introduced by La Nave \& Tian for and of the Hermitian metrics introduced by Sherman \& Weinkove. Our method is based on the solution to the Gauduchon conjecture by Szekelyhidi, Tosatti \& Weinkove.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信