Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh
{"title":"用软计算和统计方法预测岩石抗拉强度","authors":"Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh","doi":"10.3311/ppci.22179","DOIUrl":null,"url":null,"abstract":"The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Rock Tensile Strength Using Soft Computing and Statistical Methods\",\"authors\":\"Jinhuo Zheng, Minglong Shen, M. Motahari, M. Khajehzadeh\",\"doi\":\"10.3311/ppci.22179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Prediction of Rock Tensile Strength Using Soft Computing and Statistical Methods
The tensile strength of the rocks is one of the effective factors in the rupture of structure foundations and underground spaces, the stability of rocky slopes, and the ability to drill and explode in rocks. This research was conducted to estimate tensile strength using methods such as simple regression (SR), multivariate linear regression (MVLR), support vector regression (SVR) with radial basis kernel function, multilayer feed-forward artificial neural network (MFF-ANN), Gaussian process regression (GPR) using squared exponential kernel (SEK) function, and adaptive neuro-fuzzy inference system (ANFIS) based on Gaussian membership function. For this purpose, petrography, and engineering features of the limestone, sandstone, and argillaceous limestone samples in the south of Iran, were assessed. The results obtained from this study were compared with those of previous research, revealing a strong correlation (R2=0.95 to 1.00) between our findings and the published works. To estimate Brazilian tensile strength (BTS), the index properties including water absorption by weight, point load index (PLI), porosity%, P-wave velocity (Vp), and density were considered as inputs. Methods were compared using various criteria. The SVR precision (R=0.96) was higher than MFF-ANN (R=0.92), ANFIS (R=0.95), GPR (R=0.945), and MVLR (R=0.89) to estimate the tensile strength. The average BTS measured in the laboratory and predicted by all 5 methods is 6.62 and 6.71 MPa, respectively, which shows the very high precision of the investigated methods. Analysis of model criteria using statistical analysis for developed relationships revealed that there is sufficient accuracy to use the empirical equations.
期刊介绍:
Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly.
Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering.
The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.