G. Pignatta, H. Javed, Mehrangiz Mastoori, Seyede Najme Sharifi, N. V. S. K. Manapragada, C. Buratti
{"title":"模拟太阳能对金字塔和阶梯城市街区的影响","authors":"G. Pignatta, H. Javed, Mehrangiz Mastoori, Seyede Najme Sharifi, N. V. S. K. Manapragada, C. Buratti","doi":"10.3390/environsciproc2021012004","DOIUrl":null,"url":null,"abstract":"Developing countries such as Iran are rapidly expanding, putting pressure on non-renewable energy resources. The building sector takes a major share of the total energy consumption of the country and is projected to increase further, resulting in the call for strategies to reduce energy use by improving the thermal performance of buildings. This study addresses the compelling need to provide optimum design guidelines for future apartment buildings in the city of Shiraz by investigating two urban cluster typologies, stair and pyramid, arranged in five orientations. The results showcase the ideal combination of 155° for the Pyramid typology, which contributes the least to the annual energy loads of the buildings.","PeriodicalId":11904,"journal":{"name":"Environmental Sciences Proceedings","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the Impact of Solar Energy on Pyramid and Stair Urban Blocks\",\"authors\":\"G. Pignatta, H. Javed, Mehrangiz Mastoori, Seyede Najme Sharifi, N. V. S. K. Manapragada, C. Buratti\",\"doi\":\"10.3390/environsciproc2021012004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing countries such as Iran are rapidly expanding, putting pressure on non-renewable energy resources. The building sector takes a major share of the total energy consumption of the country and is projected to increase further, resulting in the call for strategies to reduce energy use by improving the thermal performance of buildings. This study addresses the compelling need to provide optimum design guidelines for future apartment buildings in the city of Shiraz by investigating two urban cluster typologies, stair and pyramid, arranged in five orientations. The results showcase the ideal combination of 155° for the Pyramid typology, which contributes the least to the annual energy loads of the buildings.\",\"PeriodicalId\":11904,\"journal\":{\"name\":\"Environmental Sciences Proceedings\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/environsciproc2021012004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environsciproc2021012004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating the Impact of Solar Energy on Pyramid and Stair Urban Blocks
Developing countries such as Iran are rapidly expanding, putting pressure on non-renewable energy resources. The building sector takes a major share of the total energy consumption of the country and is projected to increase further, resulting in the call for strategies to reduce energy use by improving the thermal performance of buildings. This study addresses the compelling need to provide optimum design guidelines for future apartment buildings in the city of Shiraz by investigating two urban cluster typologies, stair and pyramid, arranged in five orientations. The results showcase the ideal combination of 155° for the Pyramid typology, which contributes the least to the annual energy loads of the buildings.