复合合金化制备烧结硬化PM钢

IF 0.3 Q4 THERMODYNAMICS
S. Geroldinger, R. Oro Calderon, C. Gierl-Mayer, H. Danninger
{"title":"复合合金化制备烧结硬化PM钢","authors":"S. Geroldinger, R. Oro Calderon, C. Gierl-Mayer, H. Danninger","doi":"10.1515/htm-2020-0007","DOIUrl":null,"url":null,"abstract":"Abstract In powder metallurgy (PM), there are several ways of introducing alloying elements into a PM material in order to adjust a certain alloying element content. Each alloying route has its advantages and disadvantages. Master alloys (MA), powders with a high content of typically several alloying elements, can be added in small amounts to a base powder, especially to introduce oxygen sensitive elements such as Cr, Mn, and Si. In addition, the master alloy can be designed in such a way that a liquid phase is formed intermediately during the sintering process to improve the distribution of alloying elements in the material and to accelerate homogenization. In this study, such master alloys were combined with pre-alloyed base powders to form hybrid alloyed mixtures with the aim of improving the material‘s sinter hardenability. The hybrid alloys were compared with mixtures of master alloy and plain Fe as reference material. The sinter hardenability of all materials was determined by generating CCT diagrams recorded with 13 different cooling rates. These were verified by metallographic cross-sections of specimens treated at common cooling rates of 3 and 1.5 K/s and subsequent hardness measurements of the microhardness (HV 0.1) of the microstructural constituents and the apparent hardness (HV 30). ◼","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sinter Hardening PM Steels Prepared through Hybrid Alloying\",\"authors\":\"S. Geroldinger, R. Oro Calderon, C. Gierl-Mayer, H. Danninger\",\"doi\":\"10.1515/htm-2020-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In powder metallurgy (PM), there are several ways of introducing alloying elements into a PM material in order to adjust a certain alloying element content. Each alloying route has its advantages and disadvantages. Master alloys (MA), powders with a high content of typically several alloying elements, can be added in small amounts to a base powder, especially to introduce oxygen sensitive elements such as Cr, Mn, and Si. In addition, the master alloy can be designed in such a way that a liquid phase is formed intermediately during the sintering process to improve the distribution of alloying elements in the material and to accelerate homogenization. In this study, such master alloys were combined with pre-alloyed base powders to form hybrid alloyed mixtures with the aim of improving the material‘s sinter hardenability. The hybrid alloys were compared with mixtures of master alloy and plain Fe as reference material. The sinter hardenability of all materials was determined by generating CCT diagrams recorded with 13 different cooling rates. These were verified by metallographic cross-sections of specimens treated at common cooling rates of 3 and 1.5 K/s and subsequent hardness measurements of the microhardness (HV 0.1) of the microstructural constituents and the apparent hardness (HV 30). ◼\",\"PeriodicalId\":44294,\"journal\":{\"name\":\"HTM-Journal of Heat Treatment and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HTM-Journal of Heat Treatment and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htm-2020-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2020-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 5

摘要

在粉末冶金中,为了调节合金元素的含量,有几种方法将合金元素引入粉末冶金材料中。每种合金化路线都有其优点和缺点。主合金(MA),通常含有几种合金元素的高含量粉末,可以少量添加到基粉中,特别是引入氧敏感元素,如Cr, Mn和Si。此外,可以设计中间合金,在烧结过程中中间形成液相,以改善合金元素在材料中的分布,加速均匀化。在本研究中,将这种中间合金与预合金基粉结合形成杂化合金混合物,以提高材料的烧结淬透性。并与母合金和普通铁的混合物进行了对比。通过生成13种不同冷却速率下记录的CCT图来确定所有材料的烧结淬透性。这是通过在3和1.5 K/s的普通冷却速率下处理的样品的金相截面以及随后的显微硬度(HV 0.1)和表观硬度(HV 30)的硬度测量来验证的。◼
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sinter Hardening PM Steels Prepared through Hybrid Alloying
Abstract In powder metallurgy (PM), there are several ways of introducing alloying elements into a PM material in order to adjust a certain alloying element content. Each alloying route has its advantages and disadvantages. Master alloys (MA), powders with a high content of typically several alloying elements, can be added in small amounts to a base powder, especially to introduce oxygen sensitive elements such as Cr, Mn, and Si. In addition, the master alloy can be designed in such a way that a liquid phase is formed intermediately during the sintering process to improve the distribution of alloying elements in the material and to accelerate homogenization. In this study, such master alloys were combined with pre-alloyed base powders to form hybrid alloyed mixtures with the aim of improving the material‘s sinter hardenability. The hybrid alloys were compared with mixtures of master alloy and plain Fe as reference material. The sinter hardenability of all materials was determined by generating CCT diagrams recorded with 13 different cooling rates. These were verified by metallographic cross-sections of specimens treated at common cooling rates of 3 and 1.5 K/s and subsequent hardness measurements of the microhardness (HV 0.1) of the microstructural constituents and the apparent hardness (HV 30). ◼
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信