托利品种的最大似然估计

Carlos Am'endola, Dimitra Kosta, Kaie Kubjas
{"title":"托利品种的最大似然估计","authors":"Carlos Am'endola, Dimitra Kosta, Kaie Kubjas","doi":"10.2140/ASTAT.2020.11.5","DOIUrl":null,"url":null,"abstract":"We study the maximum likelihood estimation problem for several classes of toric Fano models. We start by exploring the maximum likelihood degree for all $2$-dimensional Gorenstein toric Fano varieties. We show that the ML degree is equal to the degree of the surface in every case except for the quintic del Pezzo surface with two ordinary double points and provide explicit expressions that allow one to compute the maximum likelihood estimate in closed form whenever the ML degree is less than 5. We then explore the reasons for the ML degree drop using $A$-discriminants and intersection theory. Finally, we show that toric Fano varieties associated to 3-valent phylogenetic trees have ML degree one and provide a formula for the maximum likelihood estimate. We prove it as a corollary to a more general result about the multiplicativity of ML degrees of codimension zero toric fiber products, and it also follows from a connection to a recent result about staged trees.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Maximum likelihood estimation of toric Fano varieties\",\"authors\":\"Carlos Am'endola, Dimitra Kosta, Kaie Kubjas\",\"doi\":\"10.2140/ASTAT.2020.11.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the maximum likelihood estimation problem for several classes of toric Fano models. We start by exploring the maximum likelihood degree for all $2$-dimensional Gorenstein toric Fano varieties. We show that the ML degree is equal to the degree of the surface in every case except for the quintic del Pezzo surface with two ordinary double points and provide explicit expressions that allow one to compute the maximum likelihood estimate in closed form whenever the ML degree is less than 5. We then explore the reasons for the ML degree drop using $A$-discriminants and intersection theory. Finally, we show that toric Fano varieties associated to 3-valent phylogenetic trees have ML degree one and provide a formula for the maximum likelihood estimate. We prove it as a corollary to a more general result about the multiplicativity of ML degrees of codimension zero toric fiber products, and it also follows from a connection to a recent result about staged trees.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/ASTAT.2020.11.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/ASTAT.2020.11.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了几类环形Fano模型的极大似然估计问题。我们首先探索所有$2$维Gorenstein toric Fano变种的最大似然度。我们证明了除了具有两个普通双点的五次del Pezzo曲面外,在任何情况下,ML度都等于曲面的度,并提供了显式表达式,允许人们在ML度小于5时以封闭形式计算最大似然估计。然后,我们使用$A$判别符和交集理论探讨ML度下降的原因。最后,我们证明了与3价系统发育树相关的环缘Fano品种的ML度为1,并提供了一个最大似然估计公式。我们证明了它是关于零维环纤维产品的ML度乘法性的一个更一般结果的一个推论,并且它也是从最近关于分阶段树的一个结果的联系中得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood estimation of toric Fano varieties
We study the maximum likelihood estimation problem for several classes of toric Fano models. We start by exploring the maximum likelihood degree for all $2$-dimensional Gorenstein toric Fano varieties. We show that the ML degree is equal to the degree of the surface in every case except for the quintic del Pezzo surface with two ordinary double points and provide explicit expressions that allow one to compute the maximum likelihood estimate in closed form whenever the ML degree is less than 5. We then explore the reasons for the ML degree drop using $A$-discriminants and intersection theory. Finally, we show that toric Fano varieties associated to 3-valent phylogenetic trees have ML degree one and provide a formula for the maximum likelihood estimate. We prove it as a corollary to a more general result about the multiplicativity of ML degrees of codimension zero toric fiber products, and it also follows from a connection to a recent result about staged trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信