一类非局部交通流模型极限解的熵容许性

A. Bressan, Wen Shen
{"title":"一类非局部交通流模型极限解的熵容许性","authors":"A. Bressan, Wen Shen","doi":"10.4310/cms.2021.v19.n5.a12","DOIUrl":null,"url":null,"abstract":"We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\\rho$ ahead. The averaging kernel is of exponential type: $w_\\varepsilon(s)=\\varepsilon^{-1} e^{-s/\\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\\varepsilon\\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\\rho_t + (\\rho v(\\rho))_x=0$.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Entropy admissibility of the limit solution for a nonlocal model of traffic flow\",\"authors\":\"A. Bressan, Wen Shen\",\"doi\":\"10.4310/cms.2021.v19.n5.a12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\\\\rho$ ahead. The averaging kernel is of exponential type: $w_\\\\varepsilon(s)=\\\\varepsilon^{-1} e^{-s/\\\\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\\\\varepsilon\\\\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\\\\rho_t + (\\\\rho v(\\\\rho))_x=0$.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2021.v19.n5.a12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2021.v19.n5.a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们考虑交通流的守恒定律模型,其中每辆车的速度取决于前方交通密度$\rho$的加权平均值。平均核为指数型:$w_\varepsilon(s)=\varepsilon^{-1} e^{-s/\varepsilon}$。对于任何速度函数$v$,我们证明了,作为$\varepsilon\to 0$,非局部方程的解的极限与标量守恒定律$\rho_t + (\rho v(\rho))_x=0$的唯一熵容许解重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy admissibility of the limit solution for a nonlocal model of traffic flow
We consider a conservation law model of traffic flow, where the velocity of each car depends on a weighted average of the traffic density $\rho$ ahead. The averaging kernel is of exponential type: $w_\varepsilon(s)=\varepsilon^{-1} e^{-s/\varepsilon}$. For any decreasing velocity function $v$, we prove that, as $\varepsilon\to 0$, the limit of solutions to the nonlocal equation coincides with the unique entropy-admissible solution to the scalar conservation law $\rho_t + (\rho v(\rho))_x=0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信