约翰-尼伦伯格定理的推广及其应用

J. Canto, C. P'erez
{"title":"约翰-尼伦伯格定理的推广及其应用","authors":"J. Canto, C. P'erez","doi":"10.1090/proc/15302","DOIUrl":null,"url":null,"abstract":"The John-Nirenberg theorem states that functions of bounded mean oscillation are exponentially integrable. In this article we give two extensions of this theorem. The first one relates the dyadic maximal function to the sharp maximal function of Fefferman-Stein, while the second one concerns local weighted mean oscillations, generalizing a result of Muckenhoupt and Wheeden. Applications to the context of generalized Poincar\\'e type inequalities and to the context of the $C_p$ class of weights are given. Extensions to the case of polynomial BMO type spaces are also given.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Extensions of the John–Nirenberg theorem and applications\",\"authors\":\"J. Canto, C. P'erez\",\"doi\":\"10.1090/proc/15302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The John-Nirenberg theorem states that functions of bounded mean oscillation are exponentially integrable. In this article we give two extensions of this theorem. The first one relates the dyadic maximal function to the sharp maximal function of Fefferman-Stein, while the second one concerns local weighted mean oscillations, generalizing a result of Muckenhoupt and Wheeden. Applications to the context of generalized Poincar\\\\'e type inequalities and to the context of the $C_p$ class of weights are given. Extensions to the case of polynomial BMO type spaces are also given.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

约翰-尼伦伯格定理指出有界平均振荡的函数是指数可积的。在本文中,我们给出了这个定理的两个扩展。第一个将二进极大函数与Fefferman-Stein的尖锐极大函数联系起来,而第二个则涉及局部加权平均振荡,推广了Muckenhoupt和Wheeden的结果。给出了该方法在广义庞加莱型不等式和C_p$类权的应用。同时给出了多项式BMO类型空间的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions of the John–Nirenberg theorem and applications
The John-Nirenberg theorem states that functions of bounded mean oscillation are exponentially integrable. In this article we give two extensions of this theorem. The first one relates the dyadic maximal function to the sharp maximal function of Fefferman-Stein, while the second one concerns local weighted mean oscillations, generalizing a result of Muckenhoupt and Wheeden. Applications to the context of generalized Poincar\'e type inequalities and to the context of the $C_p$ class of weights are given. Extensions to the case of polynomial BMO type spaces are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信