传递布尔函数的一个驯服序列

M. P. Forsström
{"title":"传递布尔函数的一个驯服序列","authors":"M. P. Forsström","doi":"10.1214/20-ecp366","DOIUrl":null,"url":null,"abstract":"Given a sequence of Boolean functions \\( (f_n)_{n \\geq 1} \\), \\( f_n \\colon \\{ 0,1 \\}^{n} \\to \\{ 0,1 \\}\\), and a sequence \\( (X^{(n)})_{n\\geq 1} \\) of continuous time \\( p_n \\)-biased random walks \\( X^{(n)} = (X_t^{(n)})_{t \\geq 0}\\) on \\( \\{ 0,1 \\}^{n} \\), let \\( C_n \\) be the (random) number of times in \\( (0,1) \\) at which the process \\( (f_n(X_t))_{t \\geq 0} \\) changes its value. In \\cite{js2006}, the authors conjectured that if \\( (f_n)_{n \\geq 1} \\) is non-degenerate, transitive and satisfies \\( \\lim_{n \\to \\infty} \\mathbb{E}[C_n] = \\infty\\), then \\( (C_n)_{n \\geq 1} \\) is tight. We give an explicit example of a sequence of Boolean functions which disproves this conjecture.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tame sequence of transitive Boolean functions\",\"authors\":\"M. P. Forsström\",\"doi\":\"10.1214/20-ecp366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a sequence of Boolean functions \\\\( (f_n)_{n \\\\geq 1} \\\\), \\\\( f_n \\\\colon \\\\{ 0,1 \\\\}^{n} \\\\to \\\\{ 0,1 \\\\}\\\\), and a sequence \\\\( (X^{(n)})_{n\\\\geq 1} \\\\) of continuous time \\\\( p_n \\\\)-biased random walks \\\\( X^{(n)} = (X_t^{(n)})_{t \\\\geq 0}\\\\) on \\\\( \\\\{ 0,1 \\\\}^{n} \\\\), let \\\\( C_n \\\\) be the (random) number of times in \\\\( (0,1) \\\\) at which the process \\\\( (f_n(X_t))_{t \\\\geq 0} \\\\) changes its value. In \\\\cite{js2006}, the authors conjectured that if \\\\( (f_n)_{n \\\\geq 1} \\\\) is non-degenerate, transitive and satisfies \\\\( \\\\lim_{n \\\\to \\\\infty} \\\\mathbb{E}[C_n] = \\\\infty\\\\), then \\\\( (C_n)_{n \\\\geq 1} \\\\) is tight. We give an explicit example of a sequence of Boolean functions which disproves this conjecture.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ecp366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ecp366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定一个布尔函数序列 \( (f_n)_{n \geq 1} \), \( f_n \colon \{ 0,1 \}^{n} \to \{ 0,1 \}\),和一个序列 \( (X^{(n)})_{n\geq 1} \) 连续时间的 \( p_n \)-有偏随机漫步 \( X^{(n)} = (X_t^{(n)})_{t \geq 0}\) on \( \{ 0,1 \}^{n} \),让 \( C_n \) 是(随机)进入的次数 \( (0,1) \) 在这个过程中 \( (f_n(X_t))_{t \geq 0} \) 更改其值。在 \cite{js2006},作者推测如果 \( (f_n)_{n \geq 1} \) 是否非简并,可传递且满足 \( \lim_{n \to \infty} \mathbb{E}[C_n] = \infty\)那么, \( (C_n)_{n \geq 1} \) 很紧。我们给出了一个明确的布尔函数序列的例子来反驳这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tame sequence of transitive Boolean functions
Given a sequence of Boolean functions \( (f_n)_{n \geq 1} \), \( f_n \colon \{ 0,1 \}^{n} \to \{ 0,1 \}\), and a sequence \( (X^{(n)})_{n\geq 1} \) of continuous time \( p_n \)-biased random walks \( X^{(n)} = (X_t^{(n)})_{t \geq 0}\) on \( \{ 0,1 \}^{n} \), let \( C_n \) be the (random) number of times in \( (0,1) \) at which the process \( (f_n(X_t))_{t \geq 0} \) changes its value. In \cite{js2006}, the authors conjectured that if \( (f_n)_{n \geq 1} \) is non-degenerate, transitive and satisfies \( \lim_{n \to \infty} \mathbb{E}[C_n] = \infty\), then \( (C_n)_{n \geq 1} \) is tight. We give an explicit example of a sequence of Boolean functions which disproves this conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信