{"title":"侧信道攻击与对策的电源噪声感知评估框架","authors":"Jianlei Yang, Chenguang Wang, Yici Cai, Qiang Zhou","doi":"10.1109/FPT.2014.7082770","DOIUrl":null,"url":null,"abstract":"Side Channel Attack (SCA) aims to extract the secret information from cryptography chips by analyzing the leakage of physical parameters. Power analysis based SCA is a popular approach to obtain secret keys by monitoring the power consumption of cryptography chips. However, most SCA evaluation methods are performed on FPGA platforms while many parasitic physical effects cannot be revealed before the cryptography chips are taped out. Roughly ignoring these effects will significantly increase the attack difficulties due to the corresponding measurement noise. Power supply noise has been observed to be critical for power analysis based SCA. This paper demonstrates a power supply noise aware evaluation framework for practical side channel attack from cryptography system design to physical design. On-chip power delivery network is implemented among physical design stage. Consequently the supply noise of power network can be explored according to the post-layout implementation. Additionally, the countermeasures of cryptography chips could be enhanced by on-chip decapacitors placement due to its influences on the characteristics of power delivery network.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"56 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Power supply noise aware evaluation framework for side channel attacks and countermeasures\",\"authors\":\"Jianlei Yang, Chenguang Wang, Yici Cai, Qiang Zhou\",\"doi\":\"10.1109/FPT.2014.7082770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Side Channel Attack (SCA) aims to extract the secret information from cryptography chips by analyzing the leakage of physical parameters. Power analysis based SCA is a popular approach to obtain secret keys by monitoring the power consumption of cryptography chips. However, most SCA evaluation methods are performed on FPGA platforms while many parasitic physical effects cannot be revealed before the cryptography chips are taped out. Roughly ignoring these effects will significantly increase the attack difficulties due to the corresponding measurement noise. Power supply noise has been observed to be critical for power analysis based SCA. This paper demonstrates a power supply noise aware evaluation framework for practical side channel attack from cryptography system design to physical design. On-chip power delivery network is implemented among physical design stage. Consequently the supply noise of power network can be explored according to the post-layout implementation. Additionally, the countermeasures of cryptography chips could be enhanced by on-chip decapacitors placement due to its influences on the characteristics of power delivery network.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"56 1\",\"pages\":\"161-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power supply noise aware evaluation framework for side channel attacks and countermeasures
Side Channel Attack (SCA) aims to extract the secret information from cryptography chips by analyzing the leakage of physical parameters. Power analysis based SCA is a popular approach to obtain secret keys by monitoring the power consumption of cryptography chips. However, most SCA evaluation methods are performed on FPGA platforms while many parasitic physical effects cannot be revealed before the cryptography chips are taped out. Roughly ignoring these effects will significantly increase the attack difficulties due to the corresponding measurement noise. Power supply noise has been observed to be critical for power analysis based SCA. This paper demonstrates a power supply noise aware evaluation framework for practical side channel attack from cryptography system design to physical design. On-chip power delivery network is implemented among physical design stage. Consequently the supply noise of power network can be explored according to the post-layout implementation. Additionally, the countermeasures of cryptography chips could be enhanced by on-chip decapacitors placement due to its influences on the characteristics of power delivery network.