图相对于关联矩阵的汉明指数

H. Ramane, Ishwar Baidari, R. Jummannaver, V. V. Manjalapur, G. A. Gudodagi, A. Yalnaik, Ajith Hanagawadimath
{"title":"图相对于关联矩阵的汉明指数","authors":"H. Ramane, Ishwar Baidari, R. Jummannaver, V. V. Manjalapur, G. A. Gudodagi, A. Yalnaik, Ajith Hanagawadimath","doi":"10.19184/ijc.2022.6.2.4","DOIUrl":null,"url":null,"abstract":"Let $B(G)$ be the incidence matrix of a graph $G$. The row in $B(G)$ corresponding to a vertex $v$, denoted by $s(v)$ is the string which belongs to $\\Bbb{Z}_2^n$, a set of $n$-tuples over a field of order two. The Hamming distance between the strings $s(u)$ and $s(v)$ is the number of positions in which $s(u)$ and $s(v)$ differ. In this paper we obtain the Hamming distance between the strings generated by the incidence matrix of a graph. The sum of Hamming distances between all pairs of strings, called Hamming index of a graph is obtained.","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamming index of graphs with respect to its incidence matrix\",\"authors\":\"H. Ramane, Ishwar Baidari, R. Jummannaver, V. V. Manjalapur, G. A. Gudodagi, A. Yalnaik, Ajith Hanagawadimath\",\"doi\":\"10.19184/ijc.2022.6.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B(G)$ be the incidence matrix of a graph $G$. The row in $B(G)$ corresponding to a vertex $v$, denoted by $s(v)$ is the string which belongs to $\\\\Bbb{Z}_2^n$, a set of $n$-tuples over a field of order two. The Hamming distance between the strings $s(u)$ and $s(v)$ is the number of positions in which $s(u)$ and $s(v)$ differ. In this paper we obtain the Hamming distance between the strings generated by the incidence matrix of a graph. The sum of Hamming distances between all pairs of strings, called Hamming index of a graph is obtained.\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2022.6.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2022.6.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$B(G)$为图$G$的关联矩阵。$B(G)$中对应于顶点$v$的行,记为$s(v)$是属于$\Bbb{Z}_2^n$的字符串,它是$n$元组在二阶域上的集合。字符串$s(u)$和$s(v)$之间的汉明距离是$s(u)$和$s(v)$的不同位置的数目。本文给出了由图的关联矩阵生成的弦之间的汉明距离。得到图中所有字符串对之间的汉明距离和,称为图的汉明索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamming index of graphs with respect to its incidence matrix
Let $B(G)$ be the incidence matrix of a graph $G$. The row in $B(G)$ corresponding to a vertex $v$, denoted by $s(v)$ is the string which belongs to $\Bbb{Z}_2^n$, a set of $n$-tuples over a field of order two. The Hamming distance between the strings $s(u)$ and $s(v)$ is the number of positions in which $s(u)$ and $s(v)$ differ. In this paper we obtain the Hamming distance between the strings generated by the incidence matrix of a graph. The sum of Hamming distances between all pairs of strings, called Hamming index of a graph is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信