{"title":"炭疽生物恐怖主义和当前疫苗","authors":"Shan Chen, Mingtao Zeng","doi":"10.4172/2157-2526.S4-003","DOIUrl":null,"url":null,"abstract":"Bacillus anthracis a Category A agent with the potential to be used in a large-scale bioterrorism attack. The current vaccine, known as Anthrax Vaccine Adsorbed (AVA), consists of a culture filtrate from an attenuated strain adsorbed to aluminum salts as an adjuvant. Although considered to be safe and effective, it is difficult to produce large amounts within a short time frame. Thus, there exists a need to produce a new-generation vaccine against anthrax that can be produced quickly. In order for the new candidate vaccines to be effective, they must elicit a high titer of antibodies against protective antigen (PA). PA neutralization minimizes host susceptibility to anthrax toxemia. In addition, eliciting antibodies against additional virulence factors, such as capsule antigens of B. anthracis, may enhance clearance of pathogen from host. This review will discuss the history of bioterrorism and current vaccine development against anthrax. To date, there have been advances in vaccine design that utilize manipulated spores, modified protein subunits, conjugated vaccines and viral delivery vehicles. Utilizing one or more of these advances may provide a new, better vaccine against anthrax.","PeriodicalId":15179,"journal":{"name":"Journal of Bioterrorism and Biodefense","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Anthrax Bioterrorism and Current Vaccines\",\"authors\":\"Shan Chen, Mingtao Zeng\",\"doi\":\"10.4172/2157-2526.S4-003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacillus anthracis a Category A agent with the potential to be used in a large-scale bioterrorism attack. The current vaccine, known as Anthrax Vaccine Adsorbed (AVA), consists of a culture filtrate from an attenuated strain adsorbed to aluminum salts as an adjuvant. Although considered to be safe and effective, it is difficult to produce large amounts within a short time frame. Thus, there exists a need to produce a new-generation vaccine against anthrax that can be produced quickly. In order for the new candidate vaccines to be effective, they must elicit a high titer of antibodies against protective antigen (PA). PA neutralization minimizes host susceptibility to anthrax toxemia. In addition, eliciting antibodies against additional virulence factors, such as capsule antigens of B. anthracis, may enhance clearance of pathogen from host. This review will discuss the history of bioterrorism and current vaccine development against anthrax. To date, there have been advances in vaccine design that utilize manipulated spores, modified protein subunits, conjugated vaccines and viral delivery vehicles. Utilizing one or more of these advances may provide a new, better vaccine against anthrax.\",\"PeriodicalId\":15179,\"journal\":{\"name\":\"Journal of Bioterrorism and Biodefense\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioterrorism and Biodefense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-2526.S4-003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioterrorism and Biodefense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-2526.S4-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bacillus anthracis a Category A agent with the potential to be used in a large-scale bioterrorism attack. The current vaccine, known as Anthrax Vaccine Adsorbed (AVA), consists of a culture filtrate from an attenuated strain adsorbed to aluminum salts as an adjuvant. Although considered to be safe and effective, it is difficult to produce large amounts within a short time frame. Thus, there exists a need to produce a new-generation vaccine against anthrax that can be produced quickly. In order for the new candidate vaccines to be effective, they must elicit a high titer of antibodies against protective antigen (PA). PA neutralization minimizes host susceptibility to anthrax toxemia. In addition, eliciting antibodies against additional virulence factors, such as capsule antigens of B. anthracis, may enhance clearance of pathogen from host. This review will discuss the history of bioterrorism and current vaccine development against anthrax. To date, there have been advances in vaccine design that utilize manipulated spores, modified protein subunits, conjugated vaccines and viral delivery vehicles. Utilizing one or more of these advances may provide a new, better vaccine against anthrax.