{"title":"基于多源流体队列的MEC系统概率卸载策略随机模型","authors":"Huan Zheng, Shunfu Jin","doi":"10.34768/amcs-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue. Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate the feasibility of the stochastic model built in this paper.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"10 1","pages":"125 - 138"},"PeriodicalIF":1.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Multi–Source Fluid Queue Based Stochastic Model of the Probabilistic Offloading Strategy in a MEC System With Multiple Mobile Devices and a Single MEC Server\",\"authors\":\"Huan Zheng, Shunfu Jin\",\"doi\":\"10.34768/amcs-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue. Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate the feasibility of the stochastic model built in this paper.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"10 1\",\"pages\":\"125 - 138\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2022-0010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2022-0010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Multi–Source Fluid Queue Based Stochastic Model of the Probabilistic Offloading Strategy in a MEC System With Multiple Mobile Devices and a Single MEC Server
Abstract Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue. Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate the feasibility of the stochastic model built in this paper.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.