一种新的节能和sla感知云资源管理方法

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
M. Shelar, S. Sane, V. Kharat
{"title":"一种新的节能和sla感知云资源管理方法","authors":"M. Shelar, S. Sane, V. Kharat","doi":"10.4018/IJGHPC.2019040104","DOIUrl":null,"url":null,"abstract":"Server virtualization is a well-known technique for virtual machine (VM) placement and consolidation and has been studied extensively by several researchers. This article presents a novel approach called aiCloud that advocates segmentation of hosts or physical machines (PMs) into four different classes that facilitates quick selection of PMs to reduce the time required to search host machines, called host search time (HST). The framework also introduces VM_Acceptance_State, a condition that avoids host overloading, which leads to significant reduction of SLA time per active host (SLATAH) that in turn reduces SLA violation (SLAV). The performance of aiCloud has been compared with other approaches using standard workload traces. Empirical evaluation presented shows that aiCloud has least HST and outperforms other approaches in terms of SLA violations and ESV (Energy and SLA Violation) and therefore may be an attractive strategy for efficient management of cloud resources.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"35 1","pages":"63-84"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Energy Efficient and SLA-Aware Approach for Cloud Resource Management\",\"authors\":\"M. Shelar, S. Sane, V. Kharat\",\"doi\":\"10.4018/IJGHPC.2019040104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Server virtualization is a well-known technique for virtual machine (VM) placement and consolidation and has been studied extensively by several researchers. This article presents a novel approach called aiCloud that advocates segmentation of hosts or physical machines (PMs) into four different classes that facilitates quick selection of PMs to reduce the time required to search host machines, called host search time (HST). The framework also introduces VM_Acceptance_State, a condition that avoids host overloading, which leads to significant reduction of SLA time per active host (SLATAH) that in turn reduces SLA violation (SLAV). The performance of aiCloud has been compared with other approaches using standard workload traces. Empirical evaluation presented shows that aiCloud has least HST and outperforms other approaches in terms of SLA violations and ESV (Energy and SLA Violation) and therefore may be an attractive strategy for efficient management of cloud resources.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"35 1\",\"pages\":\"63-84\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2019040104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2019040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

服务器虚拟化是一种众所周知的用于虚拟机(VM)放置和整合的技术,许多研究人员对此进行了广泛的研究。本文提出了一种名为aiCloud的新方法,它提倡将主机或物理机器(pm)分割为四个不同的类,以便快速选择pm以减少搜索主机所需的时间,称为主机搜索时间(HST)。该框架还引入了VM_Acceptance_State,这是一种避免主机过载的条件,这会显著减少每台活动主机(SLATAH)的SLA时间,从而减少SLA违规(SLAV)。使用标准工作负载跟踪将aiCloud的性能与其他方法进行了比较。实证评估表明,aiCloud具有最低的HST,并且在SLA违反和ESV(能源和SLA违反)方面优于其他方法,因此可能是有效管理云资源的有吸引力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Energy Efficient and SLA-Aware Approach for Cloud Resource Management
Server virtualization is a well-known technique for virtual machine (VM) placement and consolidation and has been studied extensively by several researchers. This article presents a novel approach called aiCloud that advocates segmentation of hosts or physical machines (PMs) into four different classes that facilitates quick selection of PMs to reduce the time required to search host machines, called host search time (HST). The framework also introduces VM_Acceptance_State, a condition that avoids host overloading, which leads to significant reduction of SLA time per active host (SLATAH) that in turn reduces SLA violation (SLAV). The performance of aiCloud has been compared with other approaches using standard workload traces. Empirical evaluation presented shows that aiCloud has least HST and outperforms other approaches in terms of SLA violations and ESV (Energy and SLA Violation) and therefore may be an attractive strategy for efficient management of cloud resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信