在过去和未来之间的大经验自协方差矩阵的行为

Pub Date : 2019-11-20 DOI:10.1142/s2010326321500210
P. Loubaton, D. Tieplova
{"title":"在过去和未来之间的大经验自协方差矩阵的行为","authors":"P. Loubaton, D. Tieplova","doi":"10.1142/s2010326321500210","DOIUrl":null,"url":null,"abstract":"The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the behavior of large empirical autocovariance matrices between the past and the future\",\"authors\":\"P. Loubaton, D. Tieplova\",\"doi\":\"10.1142/s2010326321500210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326321500210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类高维复高斯不相关序列的样本自协方差矩阵的过去和未来之间的奇异值平方分布的渐近性质。利用高斯工具,建立了该分布表现为一个确定性概率测度,其支持度[公式:见文]被表征。还确定了平方奇异值几乎肯定位于[公式:见文]的邻域中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the behavior of large empirical autocovariance matrices between the past and the future
The asymptotic behavior of the distribution of the squared singular values of the sample autocovariance matrix between the past and the future of a high-dimensional complex Gaussian uncorrelated sequence is studied. Using Gaussian tools, it is established that the distribution behaves as a deterministic probability measure whose support [Formula: see text] is characterized. It is also established that the squared singular values are almost surely located in a neighborhood of [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信