{"title":"用高压液相色谱法定量测定尿中邻甲酚对甲苯暴露人群的生物监测","authors":"A. Yadav, A. Chakrabarti, Geoffrey Nengzapum","doi":"10.4103/ed.ed_23_20","DOIUrl":null,"url":null,"abstract":"Aim: Quantification of urinary ortho-cresol (OC) by high pressure liquid chromatography coupled with photodiode array detector. Materials and Methods: Includes acid hydrolysis of urine, liquid–liquid extraction, and chromatography quantification of extracted OC in urine. Results: Limit of detection, limit of quantification, and coefficient of linearity (R2) were 0.18 μg/ml, 0.62 μg/ml, and 0.9998, respectively. Recovery % of method ranged from 92%, 97%, and 100%. For intraday and interday precision coefficient of variation was 0.41%, 0.64%, and 0.89%, 0.86% for urine samples spiked with OC standards final concentration of 0.25 μg/ml and 0.7 μg/ml, respectively. Results (mean ± standard deviation) of exposed and unexposed real urine samples analyzed for OC with this method were 0.92 ± 0.76 and 0.40 ± 0.20 μg/ml, respectively. Statistical analysis of results showed significant (P ≤ 0.001) difference between urinary OC among exposed and unexposed subjects. Conclusion: The present work describes precise, easy, and less time consuming method for estimation of OC in urine of population exposed to toluene. It can be used as a promising tool for biomonitoring of population exposed to toluene.","PeriodicalId":11702,"journal":{"name":"Environmental Disease","volume":"8 1","pages":"78 - 82"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative estimation of urinary ortho-cresol by high pressure liquid chromatography for biomonitoring of toluene exposed population\",\"authors\":\"A. Yadav, A. Chakrabarti, Geoffrey Nengzapum\",\"doi\":\"10.4103/ed.ed_23_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Quantification of urinary ortho-cresol (OC) by high pressure liquid chromatography coupled with photodiode array detector. Materials and Methods: Includes acid hydrolysis of urine, liquid–liquid extraction, and chromatography quantification of extracted OC in urine. Results: Limit of detection, limit of quantification, and coefficient of linearity (R2) were 0.18 μg/ml, 0.62 μg/ml, and 0.9998, respectively. Recovery % of method ranged from 92%, 97%, and 100%. For intraday and interday precision coefficient of variation was 0.41%, 0.64%, and 0.89%, 0.86% for urine samples spiked with OC standards final concentration of 0.25 μg/ml and 0.7 μg/ml, respectively. Results (mean ± standard deviation) of exposed and unexposed real urine samples analyzed for OC with this method were 0.92 ± 0.76 and 0.40 ± 0.20 μg/ml, respectively. Statistical analysis of results showed significant (P ≤ 0.001) difference between urinary OC among exposed and unexposed subjects. Conclusion: The present work describes precise, easy, and less time consuming method for estimation of OC in urine of population exposed to toluene. It can be used as a promising tool for biomonitoring of population exposed to toluene.\",\"PeriodicalId\":11702,\"journal\":{\"name\":\"Environmental Disease\",\"volume\":\"8 1\",\"pages\":\"78 - 82\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ed.ed_23_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ed.ed_23_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative estimation of urinary ortho-cresol by high pressure liquid chromatography for biomonitoring of toluene exposed population
Aim: Quantification of urinary ortho-cresol (OC) by high pressure liquid chromatography coupled with photodiode array detector. Materials and Methods: Includes acid hydrolysis of urine, liquid–liquid extraction, and chromatography quantification of extracted OC in urine. Results: Limit of detection, limit of quantification, and coefficient of linearity (R2) were 0.18 μg/ml, 0.62 μg/ml, and 0.9998, respectively. Recovery % of method ranged from 92%, 97%, and 100%. For intraday and interday precision coefficient of variation was 0.41%, 0.64%, and 0.89%, 0.86% for urine samples spiked with OC standards final concentration of 0.25 μg/ml and 0.7 μg/ml, respectively. Results (mean ± standard deviation) of exposed and unexposed real urine samples analyzed for OC with this method were 0.92 ± 0.76 and 0.40 ± 0.20 μg/ml, respectively. Statistical analysis of results showed significant (P ≤ 0.001) difference between urinary OC among exposed and unexposed subjects. Conclusion: The present work describes precise, easy, and less time consuming method for estimation of OC in urine of population exposed to toluene. It can be used as a promising tool for biomonitoring of population exposed to toluene.