局部最小二乘蒙特卡罗风险管理

IF 1.7 3区 经济学 Q2 ECONOMICS
ASTIN Bulletin Pub Date : 2023-07-14 DOI:10.1017/asb.2023.25
Donatien Hainaut, Adnane Akbaraly
{"title":"局部最小二乘蒙特卡罗风险管理","authors":"Donatien Hainaut, Adnane Akbaraly","doi":"10.1017/asb.2023.25","DOIUrl":null,"url":null,"abstract":"Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"39 1","pages":"489 - 514"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk management with local least squares Monte Carlo\",\"authors\":\"Donatien Hainaut, Adnane Akbaraly\",\"doi\":\"10.1017/asb.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"39 1\",\"pages\":\"489 - 514\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2023.25\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2023.25","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要最小二乘蒙特卡罗方法已经成为保险和金融行业评估公司市场风险的标准方法。然而,模拟反应对风险因素的非线性回归给这一过程带来了挑战。本文提出了一种新颖的方法来解决这一问题,采用先验分割的反应。使用K-means算法,我们确定响应集群,然后根据其相应的风险因素进行局部回归。将局部模型与逻辑回归相结合,得到全局回归函数。我们通过两个实例证明了所提出的局部最小二乘蒙特卡罗方法的有效性。第一个案例研究调查了赫斯顿随机波动模型中的蝴蝶和公牛陷阱选项,而第二个案例研究考察了参与人寿保险情景中的风险暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk management with local least squares Monte Carlo
Abstract The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信