S. Shivakumar, Yasodha Lakshmi Tadakaluru, Raja Ratna Reddy Yakkanti, S. Suresh, P. C. Sekhar
{"title":"槲皮素在化学预防多种致癌物和诱变物中的作用","authors":"S. Shivakumar, Yasodha Lakshmi Tadakaluru, Raja Ratna Reddy Yakkanti, S. Suresh, P. C. Sekhar","doi":"10.5138/09750215.2040","DOIUrl":null,"url":null,"abstract":"Quercetin is a ubiquitous plant flavoniod with significant pharmacological and clinical activity. In this study we determined to demonstrate the protective role of quercetin against range of mutagens and carcinogens in a combination of in vitro and in vivo studies via different mechanisms. Quercetin demonstrated significant protective role against sodium azide, benzo(a)pyrene, cyclophosphamide monohydrate, methyl methane sulphonate and etoposide compared to other mutagens. Quercetin is effective in both in vitro and in vivo test conditions and also in the presence as well as in the absence of metabolic activation system (Rat liver S9). Auto oxidation, antioxidant properties, inhibition of pro-mutagens metabolism by CYP1A activity and multiple antimutagenic and adaptive response, mechanisms of quercetin may account for its protective role in cancer prevention. In conclusion, the results clearly indicate that quercetin plays a significant role against mutagens that act by direct DNA binding (form DNA adducts), pro-mutagens and alkylating agents with free radical generation; which could be the rationale for its potent anticancer activity against particular cancer types.","PeriodicalId":13912,"journal":{"name":"International Journal of Drug Delivery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of Quercetin in chemoprevention against wide range of carcinogens and mutagens\",\"authors\":\"S. Shivakumar, Yasodha Lakshmi Tadakaluru, Raja Ratna Reddy Yakkanti, S. Suresh, P. C. Sekhar\",\"doi\":\"10.5138/09750215.2040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quercetin is a ubiquitous plant flavoniod with significant pharmacological and clinical activity. In this study we determined to demonstrate the protective role of quercetin against range of mutagens and carcinogens in a combination of in vitro and in vivo studies via different mechanisms. Quercetin demonstrated significant protective role against sodium azide, benzo(a)pyrene, cyclophosphamide monohydrate, methyl methane sulphonate and etoposide compared to other mutagens. Quercetin is effective in both in vitro and in vivo test conditions and also in the presence as well as in the absence of metabolic activation system (Rat liver S9). Auto oxidation, antioxidant properties, inhibition of pro-mutagens metabolism by CYP1A activity and multiple antimutagenic and adaptive response, mechanisms of quercetin may account for its protective role in cancer prevention. In conclusion, the results clearly indicate that quercetin plays a significant role against mutagens that act by direct DNA binding (form DNA adducts), pro-mutagens and alkylating agents with free radical generation; which could be the rationale for its potent anticancer activity against particular cancer types.\",\"PeriodicalId\":13912,\"journal\":{\"name\":\"International Journal of Drug Delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Drug Delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5138/09750215.2040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Drug Delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5138/09750215.2040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of Quercetin in chemoprevention against wide range of carcinogens and mutagens
Quercetin is a ubiquitous plant flavoniod with significant pharmacological and clinical activity. In this study we determined to demonstrate the protective role of quercetin against range of mutagens and carcinogens in a combination of in vitro and in vivo studies via different mechanisms. Quercetin demonstrated significant protective role against sodium azide, benzo(a)pyrene, cyclophosphamide monohydrate, methyl methane sulphonate and etoposide compared to other mutagens. Quercetin is effective in both in vitro and in vivo test conditions and also in the presence as well as in the absence of metabolic activation system (Rat liver S9). Auto oxidation, antioxidant properties, inhibition of pro-mutagens metabolism by CYP1A activity and multiple antimutagenic and adaptive response, mechanisms of quercetin may account for its protective role in cancer prevention. In conclusion, the results clearly indicate that quercetin plays a significant role against mutagens that act by direct DNA binding (form DNA adducts), pro-mutagens and alkylating agents with free radical generation; which could be the rationale for its potent anticancer activity against particular cancer types.