1美元会话转向检测器:测量视频会话如何影响在线课程中的学生学习

A. Stankiewicz, Chinmay Kulkarni
{"title":"1美元会话转向检测器:测量视频会话如何影响在线课程中的学生学习","authors":"A. Stankiewicz, Chinmay Kulkarni","doi":"10.1145/2876034.2876048","DOIUrl":null,"url":null,"abstract":"Massive online classes can benefit from peer interactions such as discussion, critique, or tutoring. However, to scaffold productive peer interactions, systems must be able to detect student behavior in interactions at scale, which is challenging when interactions occur over rich media like video. This paper introduces an imprecise yet simple browser-based conversational turn detector for video conversations. Turns are detected without accessing video or audio data. We show how this turn detector can find dominance in video-based conversations. In a case study with 1,027 students using Talkabout, a video-based discussion system for online classes, we show how detected conversational turn behavior correlates with participants' subjective experience in discussions and their final course grade.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"$1 Conversational Turn Detector: Measuring How Video Conversations Affect Student Learning in Online Classes\",\"authors\":\"A. Stankiewicz, Chinmay Kulkarni\",\"doi\":\"10.1145/2876034.2876048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive online classes can benefit from peer interactions such as discussion, critique, or tutoring. However, to scaffold productive peer interactions, systems must be able to detect student behavior in interactions at scale, which is challenging when interactions occur over rich media like video. This paper introduces an imprecise yet simple browser-based conversational turn detector for video conversations. Turns are detected without accessing video or audio data. We show how this turn detector can find dominance in video-based conversations. In a case study with 1,027 students using Talkabout, a video-based discussion system for online classes, we show how detected conversational turn behavior correlates with participants' subjective experience in discussions and their final course grade.\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2876048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2876048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

大量的在线课程可以从同伴的互动中受益,比如讨论、批评或辅导。然而,为了支撑富有成效的同伴互动,系统必须能够在大规模的互动中检测学生的行为,当互动发生在像视频这样的富媒体中时,这是具有挑战性的。本文介绍了一种不精确但简单的基于浏览器的视频会话转向检测器。在不访问视频或音频数据的情况下检测转弯。我们展示了这个转向检测器如何在基于视频的对话中找到主导地位。在对1027名使用Talkabout(一种基于视频的在线课堂讨论系统)的学生进行的案例研究中,我们展示了被检测到的会话转向行为如何与参与者在讨论中的主观体验和他们的最终课程成绩相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$1 Conversational Turn Detector: Measuring How Video Conversations Affect Student Learning in Online Classes
Massive online classes can benefit from peer interactions such as discussion, critique, or tutoring. However, to scaffold productive peer interactions, systems must be able to detect student behavior in interactions at scale, which is challenging when interactions occur over rich media like video. This paper introduces an imprecise yet simple browser-based conversational turn detector for video conversations. Turns are detected without accessing video or audio data. We show how this turn detector can find dominance in video-based conversations. In a case study with 1,027 students using Talkabout, a video-based discussion system for online classes, we show how detected conversational turn behavior correlates with participants' subjective experience in discussions and their final course grade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信