基于随机子采样的空间相关海量MIMO信道信号检测

Pascal Seidel, Benjamin Knoop, Sebastian Schmale, Daniel Gregorek, S. Paul, Jochen Rust
{"title":"基于随机子采样的空间相关海量MIMO信道信号检测","authors":"Pascal Seidel, Benjamin Knoop, Sebastian Schmale, Daniel Gregorek, S. Paul, Jochen Rust","doi":"10.1109/ISCAS.2018.8351619","DOIUrl":null,"url":null,"abstract":"Massive MIMO systems have become more popular in wireless communications due to their improved spectral efficiency compared to existing small-scale MIMO systems. However, current estimation methodes take too long for larger numbers of antennas. In this paper, a near-optimal iterative linear signal detection for massive MIMO is introduced exploiting the random projection method to approximate the channel matrix in a significantly lower dimensional space. This is then used as a preconditioner in the conjugate gradient least squares algorithm to enhance the convergence rate. For evaluation, different scenarios of spatial correlation in a massive MIMO system are considered. In contrast to other low-complexity signal detectors, our approach achieves excellent results in terms of robustness and determined latency.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"6 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random Subsampling based Signal Detection for Spatial Correlated Massive MIMO Channels\",\"authors\":\"Pascal Seidel, Benjamin Knoop, Sebastian Schmale, Daniel Gregorek, S. Paul, Jochen Rust\",\"doi\":\"10.1109/ISCAS.2018.8351619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive MIMO systems have become more popular in wireless communications due to their improved spectral efficiency compared to existing small-scale MIMO systems. However, current estimation methodes take too long for larger numbers of antennas. In this paper, a near-optimal iterative linear signal detection for massive MIMO is introduced exploiting the random projection method to approximate the channel matrix in a significantly lower dimensional space. This is then used as a preconditioner in the conjugate gradient least squares algorithm to enhance the convergence rate. For evaluation, different scenarios of spatial correlation in a massive MIMO system are considered. In contrast to other low-complexity signal detectors, our approach achieves excellent results in terms of robustness and determined latency.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"6 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与现有的小规模MIMO系统相比,大规模MIMO系统由于其频谱效率的提高而在无线通信中变得越来越流行。然而,目前的估计方法对于天线数量较大的情况需要很长时间。本文提出了一种大规模MIMO的近最优迭代线性信号检测方法,利用随机投影法在明显较低维空间中逼近信道矩阵。然后将其用作共轭梯度最小二乘算法的预条件,以提高收敛速度。为了进行评估,考虑了大规模MIMO系统中不同的空间相关情况。与其他低复杂度信号检测器相比,我们的方法在鲁棒性和确定的延迟方面取得了出色的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Subsampling based Signal Detection for Spatial Correlated Massive MIMO Channels
Massive MIMO systems have become more popular in wireless communications due to their improved spectral efficiency compared to existing small-scale MIMO systems. However, current estimation methodes take too long for larger numbers of antennas. In this paper, a near-optimal iterative linear signal detection for massive MIMO is introduced exploiting the random projection method to approximate the channel matrix in a significantly lower dimensional space. This is then used as a preconditioner in the conjugate gradient least squares algorithm to enhance the convergence rate. For evaluation, different scenarios of spatial correlation in a massive MIMO system are considered. In contrast to other low-complexity signal detectors, our approach achieves excellent results in terms of robustness and determined latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信