{"title":"一类具有临界增长的拟线性Choquard方程的基态解","authors":"Liuyang Shao, Haibo Chen, Yingmin Wang","doi":"10.22436/JNSA.014.06.02","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the following quasilinear Choquard equation with critical nonlinearity { −4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ u2(2 )−2u, x ∈ RN, u > 0, x ∈ RN, where Iα is a Riesz potential, 0 < α < N, and N+α N < p < N+α N−2 , with 2 ∗ = 2N N−2 . Under suitable assumption on V , we research the existence of positive ground state solutions of above equations. Moreover, we consider the ground state solution of the equation (1.4). Our work supplements many existing partial results in the literature.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"14 1","pages":"390-399"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions for a class of quasilinear Choquard equation with critical growth\",\"authors\":\"Liuyang Shao, Haibo Chen, Yingmin Wang\",\"doi\":\"10.22436/JNSA.014.06.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the following quasilinear Choquard equation with critical nonlinearity { −4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ u2(2 )−2u, x ∈ RN, u > 0, x ∈ RN, where Iα is a Riesz potential, 0 < α < N, and N+α N < p < N+α N−2 , with 2 ∗ = 2N N−2 . Under suitable assumption on V , we research the existence of positive ground state solutions of above equations. Moreover, we consider the ground state solution of the equation (1.4). Our work supplements many existing partial results in the literature.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"14 1\",\"pages\":\"390-399\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.014.06.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.014.06.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑了具有临界非线性{−4u+ V(x)u−u4u2 = (Iα∗|u|p)|u|p−2u+ u2(2)−2u, x∈RN, u > 0, x∈RN的拟线性Choquard方程,其中Iα是Riesz势,0 < α < N,且N+α N < p < N+α N−2,且2∗= 2N N−2。在适当的V假设下,研究了上述方程正基态解的存在性。此外,我们考虑方程(1.4)的基态解。我们的工作补充了文献中许多现有的部分结果。
Ground state solutions for a class of quasilinear Choquard equation with critical growth
In this paper, we consider the following quasilinear Choquard equation with critical nonlinearity { −4u+ V(x)u− u4u2 = (Iα ∗ |u|p)|u|p−2u+ u2(2 )−2u, x ∈ RN, u > 0, x ∈ RN, where Iα is a Riesz potential, 0 < α < N, and N+α N < p < N+α N−2 , with 2 ∗ = 2N N−2 . Under suitable assumption on V , we research the existence of positive ground state solutions of above equations. Moreover, we consider the ground state solution of the equation (1.4). Our work supplements many existing partial results in the literature.