{"title":"有限集上NIP公式类型的一致可定义性","authors":"Shlomo Eshel, Itay Kaplan","doi":"10.1142/s021906132150015x","DOIUrl":null,"url":null,"abstract":"Combining two results from machine learning theory we prove that a formula is NIP if and only if it satisfies uniform definability of types over finite sets (UDTFS). This settles a conjecture of Laskowski.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"43 1","pages":"2150015:1-2150015:13"},"PeriodicalIF":0.9000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On uniform definability of types over finite sets for NIP formulas\",\"authors\":\"Shlomo Eshel, Itay Kaplan\",\"doi\":\"10.1142/s021906132150015x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining two results from machine learning theory we prove that a formula is NIP if and only if it satisfies uniform definability of types over finite sets (UDTFS). This settles a conjecture of Laskowski.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"43 1\",\"pages\":\"2150015:1-2150015:13\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021906132150015x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021906132150015x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
On uniform definability of types over finite sets for NIP formulas
Combining two results from machine learning theory we prove that a formula is NIP if and only if it satisfies uniform definability of types over finite sets (UDTFS). This settles a conjecture of Laskowski.
期刊介绍:
The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.