关于理想格的广义零因子图

P. Baruah, K. Patra
{"title":"关于理想格的广义零因子图","authors":"P. Baruah, K. Patra","doi":"10.22232/stj.2021.09.01.05","DOIUrl":null,"url":null,"abstract":"Let L be a lattice with the least element 0, and I be an ideal of L. In this paper, we introduce a generalized zero-divisor graph G (L) I Γ of L with respect to the ideal I. We show that G (L) I Γ is connected with diameter at most three. If G (L) I Γ has a cycle, we show that the girth of G (L) I Γ is at most four. We also investigate the existence of cut vertices of G (L) I Γ Moreover, we examine certain situations when G (L) I Γ is a complete bipartite graph.","PeriodicalId":22107,"journal":{"name":"Silpakorn University Science and Technology Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Generalized Zero-Divisor Graph of a Lattice with respect to an Ideal\",\"authors\":\"P. Baruah, K. Patra\",\"doi\":\"10.22232/stj.2021.09.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be a lattice with the least element 0, and I be an ideal of L. In this paper, we introduce a generalized zero-divisor graph G (L) I Γ of L with respect to the ideal I. We show that G (L) I Γ is connected with diameter at most three. If G (L) I Γ has a cycle, we show that the girth of G (L) I Γ is at most four. We also investigate the existence of cut vertices of G (L) I Γ Moreover, we examine certain situations when G (L) I Γ is a complete bipartite graph.\",\"PeriodicalId\":22107,\"journal\":{\"name\":\"Silpakorn University Science and Technology Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silpakorn University Science and Technology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22232/stj.2021.09.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silpakorn University Science and Technology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22232/stj.2021.09.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设L是最小元素为0的格,I是L的一个理想。本文引入了L关于理想I的广义零因子图G (L) I Γ,并证明了G (L) I Γ与直径最多为3的连通。如果G (L) I Γ有一个循环,我们证明G (L) I Γ的周长最多为4。我们还研究了G (L) I Γ的切顶点的存在性,并研究了G (L) I Γ是完全二部图的某些情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Generalized Zero-Divisor Graph of a Lattice with respect to an Ideal
Let L be a lattice with the least element 0, and I be an ideal of L. In this paper, we introduce a generalized zero-divisor graph G (L) I Γ of L with respect to the ideal I. We show that G (L) I Γ is connected with diameter at most three. If G (L) I Γ has a cycle, we show that the girth of G (L) I Γ is at most four. We also investigate the existence of cut vertices of G (L) I Γ Moreover, we examine certain situations when G (L) I Γ is a complete bipartite graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信