基于语言的增强越南语情感分析

C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan
{"title":"基于语言的增强越南语情感分析","authors":"C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan","doi":"10.1109/RIVF51545.2021.9642123","DOIUrl":null,"url":null,"abstract":"Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linguistic-based Augmentation for Enhancing Vietnamese Sentiment Analysis\",\"authors\":\"C. Manh, Hieu Pham Minh, Hoang Do Van, Khanh Nguyen Quoc, Khanh Nguyen, Manh Tran Van, Anh Phan\",\"doi\":\"10.1109/RIVF51545.2021.9642123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别顾客对产品、服务和品牌的看法,给电子商务的发展带来很多好处。捕捉顾客的态度有助于零售商调整商业决策。客户可以通过咨询社会经验来选择合适的产品和良好的服务。然而,诸如首字母缩略词、俚语、错误语法等自由风格的客户反馈文本正在挑战任何机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linguistic-based Augmentation for Enhancing Vietnamese Sentiment Analysis
Identify customer’s opinions about products, services, and brands bring many benefits to e-commerce development. Capturing customer attitudes helps retailers adjust business decisions. Customers can select the suitable product and the good service by consulting social experiences. However, free-style texts of customer feedback like acronyms, slang words, incorrect grammar, and so on are challenging any machine learning model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信