有限群自由积的共生长级数

J. Bell, Haggai Liu, M. Mishna
{"title":"有限群自由积的共生长级数","authors":"J. Bell, Haggai Liu, M. Mishna","doi":"10.1142/S0218196723500133","DOIUrl":null,"url":null,"abstract":"Given a finitely generated group with generating set $S$, we study the cogrowth sequence, which is the number of words of length $n$ over the alphabet $S$ that are equal to one. This is related to the probability of return for walks the corresponding Cayley graph. Muller and Schupp proved the generating function of the sequence is algebraic when $G$ has a finite-index free subgroup (using a result of Dunwoody). In this work we make this result effective for free products of finite groups: we determine bounds for the degree and height of the minimal polynomial of the generating function, and determine the minimal polynomial explicitly for some families of free products. Using these results we are able to prove that a gap theorem holds: if $S$ is a finite symmetric generating set for a group $G$ and if $a_n$ denotes the number of words of length $n$ over the alphabet $S$ that are equal to $1$ then $\\limsup_n a_n^{1/n}$ exists and is either $1$, $2$, or at least $2\\sqrt{2}$.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"13 1","pages":"237-260"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cogrowth series for free products of finite groups\",\"authors\":\"J. Bell, Haggai Liu, M. Mishna\",\"doi\":\"10.1142/S0218196723500133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a finitely generated group with generating set $S$, we study the cogrowth sequence, which is the number of words of length $n$ over the alphabet $S$ that are equal to one. This is related to the probability of return for walks the corresponding Cayley graph. Muller and Schupp proved the generating function of the sequence is algebraic when $G$ has a finite-index free subgroup (using a result of Dunwoody). In this work we make this result effective for free products of finite groups: we determine bounds for the degree and height of the minimal polynomial of the generating function, and determine the minimal polynomial explicitly for some families of free products. Using these results we are able to prove that a gap theorem holds: if $S$ is a finite symmetric generating set for a group $G$ and if $a_n$ denotes the number of words of length $n$ over the alphabet $S$ that are equal to $1$ then $\\\\limsup_n a_n^{1/n}$ exists and is either $1$, $2$, or at least $2\\\\sqrt{2}$.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"13 1\",\"pages\":\"237-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196723500133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196723500133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有生成集$S$的有限生成群,我们研究了协生长序列,它是字母表$S$上长度为$n$且等于1的单词的数目。这与在相应的凯利图中行走的返回概率有关。Muller和Schupp利用Dunwoody的一个结果证明了当$G$有一个有限索引自由子群时,序列的生成函数是代数的。在本文中,我们使这个结果对有限群的自由积有效:我们确定了生成函数的最小多项式的阶和高度的界,并明确地确定了一些自由积族的最小多项式。利用这些结果,我们能够证明一个间隙定理成立:如果$S$是群$G$的有限对称生成集,如果$a_n$表示字母$S$上长度为$n$的单词数等于$1$,则$\limsup_n a_n^{1/n}$存在,并且要么是$1$,要么是$2$,或者至少是$2\sqrt{2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cogrowth series for free products of finite groups
Given a finitely generated group with generating set $S$, we study the cogrowth sequence, which is the number of words of length $n$ over the alphabet $S$ that are equal to one. This is related to the probability of return for walks the corresponding Cayley graph. Muller and Schupp proved the generating function of the sequence is algebraic when $G$ has a finite-index free subgroup (using a result of Dunwoody). In this work we make this result effective for free products of finite groups: we determine bounds for the degree and height of the minimal polynomial of the generating function, and determine the minimal polynomial explicitly for some families of free products. Using these results we are able to prove that a gap theorem holds: if $S$ is a finite symmetric generating set for a group $G$ and if $a_n$ denotes the number of words of length $n$ over the alphabet $S$ that are equal to $1$ then $\limsup_n a_n^{1/n}$ exists and is either $1$, $2$, or at least $2\sqrt{2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信