基于小波网格特征提取和支持向量机的潮汐表数字识别

Shuang Liu, Peng Chen
{"title":"基于小波网格特征提取和支持向量机的潮汐表数字识别","authors":"Shuang Liu, Peng Chen","doi":"10.1109/IWISA.2009.5073220","DOIUrl":null,"url":null,"abstract":"To be represented in tabular form and graphical format in ship electronic navigation system, printing tidal material must be processed into textual information, which is completed by an automatic tide table recognition module consisting of a feature extractor and a classifier. In feature extraction, a new wavelet part grid feature is defined based on wavelet's directive characteristics. In classification phase, multi-class SVM classifier is used instead of neural networks. Experiments show that the wavelet grid feature has good stability and satisfactory distinction, and SVM classifiers have better generalization performance than that of neural networks.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tide Table Digit Recognition Based on Wavelet-Grid Feature Extraction and Support Vector Machine\",\"authors\":\"Shuang Liu, Peng Chen\",\"doi\":\"10.1109/IWISA.2009.5073220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To be represented in tabular form and graphical format in ship electronic navigation system, printing tidal material must be processed into textual information, which is completed by an automatic tide table recognition module consisting of a feature extractor and a classifier. In feature extraction, a new wavelet part grid feature is defined based on wavelet's directive characteristics. In classification phase, multi-class SVM classifier is used instead of neural networks. Experiments show that the wavelet grid feature has good stability and satisfactory distinction, and SVM classifiers have better generalization performance than that of neural networks.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"8 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5073220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5073220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在船舶电子导航系统中,打印潮汐资料要以表格形式和图形形式表示,必须将其处理成文本信息,并由特征提取器和分类器组成的潮汐表自动识别模块来完成。在特征提取中,基于小波的方向性特征定义了一种新的小波部分网格特征。在分类阶段,采用多类支持向量机分类器代替神经网络。实验表明,小波网格特征具有良好的稳定性和良好的区分效果,支持向量机分类器的泛化性能优于神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tide Table Digit Recognition Based on Wavelet-Grid Feature Extraction and Support Vector Machine
To be represented in tabular form and graphical format in ship electronic navigation system, printing tidal material must be processed into textual information, which is completed by an automatic tide table recognition module consisting of a feature extractor and a classifier. In feature extraction, a new wavelet part grid feature is defined based on wavelet's directive characteristics. In classification phase, multi-class SVM classifier is used instead of neural networks. Experiments show that the wavelet grid feature has good stability and satisfactory distinction, and SVM classifiers have better generalization performance than that of neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信