考虑交易成本的随机波动模型下的美式期权估值

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Andrea Cosso, D. Marazzina, C. Sgarra
{"title":"考虑交易成本的随机波动模型下的美式期权估值","authors":"Andrea Cosso, D. Marazzina, C. Sgarra","doi":"10.1080/17442508.2014.989525","DOIUrl":null,"url":null,"abstract":"In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton–Jacobi–Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"23 1","pages":"518 - 536"},"PeriodicalIF":0.8000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"American option valuation in a stochastic volatility model with transaction costs\",\"authors\":\"Andrea Cosso, D. Marazzina, C. Sgarra\",\"doi\":\"10.1080/17442508.2014.989525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton–Jacobi–Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"23 1\",\"pages\":\"518 - 536\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.989525\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.989525","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文分析了考虑交易成本的随机波动率模型下的美式期权估值问题。我们将证明它可以被表述为一个奇异随机最优控制问题,证明了相关Hamilton-Jacobi-Bellman偏微分方程黏度解的存在唯一性。此外,在通过选择合适的效用函数进行降维之后,我们将提供一个数值示例,说明如何在当前的建模框架中计算美国期权价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
American option valuation in a stochastic volatility model with transaction costs
In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton–Jacobi–Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects. Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly. In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信