木质素磺酸处理木薯纤维的结构和力学性能

Paula Lage Agrize, Beatriz Dantas Lourenço da Silva, Betina Carvalho Veiga, Camila Aparecida Abelha Rocha, F. G. Garcia Filho, Fábio de Oliveira Braga
{"title":"木质素磺酸处理木薯纤维的结构和力学性能","authors":"Paula Lage Agrize, Beatriz Dantas Lourenço da Silva, Betina Carvalho Veiga, Camila Aparecida Abelha Rocha, F. G. Garcia Filho, Fábio de Oliveira Braga","doi":"10.1590/1517-7076-rmat-2023-0041","DOIUrl":null,"url":null,"abstract":"The use of natural lignocellulosic fiber (NLF) biocomposites for the construction industry has been growing over the years, due to technical and environmental advantages. However, fiber-matrix incompatibility remains a major challenge. Various surface treatments have been investigated to improve fiber-matrix bonding, including sodium lignosulfonate (SLS), a potentially effective and environmentally friendly chemical. In this study, SLS treatment protocols were applied to piassava fibers to evaluate their influence on the fibers. Thermogravimetric Analysis (TG/DTG), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM/EDS), Fourier-transform Infrared Spectroscopy (FTIR), moisture absorption measurements and tensile tests were performed to character - ize the modifications. Results demonstrated, for the first time, the efficiency of SLS to remove extractives from the piassava surface. In general, partial degradation of the cellulosic structure was observed, noticeable by the slight drop in crystallinity index (from 42.80 to 39.82%), and an increase in the TG residual mass (from 21.35 to 31.90%), along with changes in DTG curves. However, a particular SLS treatment using ultrasonic bath was able to fully clean the surface preserving the cellulosic structure, and increasing the strength of fibers (from 386 ± 140 MPa to 524 ± 126 MPa).","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and mechanical behavior of lignosulfonate-treated piassava (Attalea funifera) fibers\",\"authors\":\"Paula Lage Agrize, Beatriz Dantas Lourenço da Silva, Betina Carvalho Veiga, Camila Aparecida Abelha Rocha, F. G. Garcia Filho, Fábio de Oliveira Braga\",\"doi\":\"10.1590/1517-7076-rmat-2023-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of natural lignocellulosic fiber (NLF) biocomposites for the construction industry has been growing over the years, due to technical and environmental advantages. However, fiber-matrix incompatibility remains a major challenge. Various surface treatments have been investigated to improve fiber-matrix bonding, including sodium lignosulfonate (SLS), a potentially effective and environmentally friendly chemical. In this study, SLS treatment protocols were applied to piassava fibers to evaluate their influence on the fibers. Thermogravimetric Analysis (TG/DTG), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM/EDS), Fourier-transform Infrared Spectroscopy (FTIR), moisture absorption measurements and tensile tests were performed to character - ize the modifications. Results demonstrated, for the first time, the efficiency of SLS to remove extractives from the piassava surface. In general, partial degradation of the cellulosic structure was observed, noticeable by the slight drop in crystallinity index (from 42.80 to 39.82%), and an increase in the TG residual mass (from 21.35 to 31.90%), along with changes in DTG curves. However, a particular SLS treatment using ultrasonic bath was able to fully clean the surface preserving the cellulosic structure, and increasing the strength of fibers (from 386 ± 140 MPa to 524 ± 126 MPa).\",\"PeriodicalId\":18246,\"journal\":{\"name\":\"Matéria (Rio de Janeiro)\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matéria (Rio de Janeiro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1517-7076-rmat-2023-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and mechanical behavior of lignosulfonate-treated piassava (Attalea funifera) fibers
The use of natural lignocellulosic fiber (NLF) biocomposites for the construction industry has been growing over the years, due to technical and environmental advantages. However, fiber-matrix incompatibility remains a major challenge. Various surface treatments have been investigated to improve fiber-matrix bonding, including sodium lignosulfonate (SLS), a potentially effective and environmentally friendly chemical. In this study, SLS treatment protocols were applied to piassava fibers to evaluate their influence on the fibers. Thermogravimetric Analysis (TG/DTG), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM/EDS), Fourier-transform Infrared Spectroscopy (FTIR), moisture absorption measurements and tensile tests were performed to character - ize the modifications. Results demonstrated, for the first time, the efficiency of SLS to remove extractives from the piassava surface. In general, partial degradation of the cellulosic structure was observed, noticeable by the slight drop in crystallinity index (from 42.80 to 39.82%), and an increase in the TG residual mass (from 21.35 to 31.90%), along with changes in DTG curves. However, a particular SLS treatment using ultrasonic bath was able to fully clean the surface preserving the cellulosic structure, and increasing the strength of fibers (from 386 ± 140 MPa to 524 ± 126 MPa).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信