TRESTLE:语音,文本和语言实验的可重复执行工具包

Changye Li, T. Cohen, Martin Michalowski, Serguei V. S. Pakhomov
{"title":"TRESTLE:语音,文本和语言实验的可重复执行工具包","authors":"Changye Li, T. Cohen, Martin Michalowski, Serguei V. S. Pakhomov","doi":"10.48550/arXiv.2302.07322","DOIUrl":null,"url":null,"abstract":"The evidence is growing that machine and deep learning methods can learn the subtle differences between the language produced by people with various forms of cognitive impairment such as dementia and cognitively healthy individuals. Valuable public data repositories such as TalkBank have made it possible for researchers in the computational community to join forces and learn from each other to make significant advances in this area. However, due to variability in approaches and data selection strategies used by various researchers, results obtained by different groups have been difficult to compare directly. In this paper, we present TRESTLE (Toolkit for Reproducible Execution of Speech Text and Language Experiments), an open source platform that focuses on two datasets from the TalkBank repository with dementia detection as an illustrative domain. Successfully deployed in the hackallenge (Hackathon/Challenge) of the International Workshop on Health Intelligence at AAAI 2022, TRESTLE provides a precise digital blueprint of the data pre-processing and selection strategies that can be reused via TRESTLE by other researchers seeking comparable results with their peers and current state-of-the-art (SOTA) approaches.","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRESTLE: Toolkit for Reproducible Execution of Speech, Text and Language Experiments\",\"authors\":\"Changye Li, T. Cohen, Martin Michalowski, Serguei V. S. Pakhomov\",\"doi\":\"10.48550/arXiv.2302.07322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evidence is growing that machine and deep learning methods can learn the subtle differences between the language produced by people with various forms of cognitive impairment such as dementia and cognitively healthy individuals. Valuable public data repositories such as TalkBank have made it possible for researchers in the computational community to join forces and learn from each other to make significant advances in this area. However, due to variability in approaches and data selection strategies used by various researchers, results obtained by different groups have been difficult to compare directly. In this paper, we present TRESTLE (Toolkit for Reproducible Execution of Speech Text and Language Experiments), an open source platform that focuses on two datasets from the TalkBank repository with dementia detection as an illustrative domain. Successfully deployed in the hackallenge (Hackathon/Challenge) of the International Workshop on Health Intelligence at AAAI 2022, TRESTLE provides a precise digital blueprint of the data pre-processing and selection strategies that can be reused via TRESTLE by other researchers seeking comparable results with their peers and current state-of-the-art (SOTA) approaches.\",\"PeriodicalId\":72181,\"journal\":{\"name\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.07322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.07322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明,机器和深度学习方法可以学习到患有各种认知障碍(如痴呆症)的人与认知健康的人之间语言的细微差异。像TalkBank这样有价值的公共数据库使得计算社区的研究人员能够联合起来,相互学习,在这一领域取得重大进展。然而,由于不同研究人员使用的方法和数据选择策略的可变性,不同群体获得的结果很难直接比较。在本文中,我们介绍了TRESTLE(可重复执行语音文本和语言实验的工具包),这是一个开源平台,专注于来自TalkBank存储库的两个数据集,并将痴呆检测作为示例域。在AAAI 2022年健康智能国际研讨会的黑客挑战赛(Hackathon/Challenge)中成功部署,TRESTLE提供了数据预处理和选择策略的精确数字蓝图,可以通过TRESTLE被其他寻求与同行和当前最先进(SOTA)方法比较结果的研究人员重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRESTLE: Toolkit for Reproducible Execution of Speech, Text and Language Experiments
The evidence is growing that machine and deep learning methods can learn the subtle differences between the language produced by people with various forms of cognitive impairment such as dementia and cognitively healthy individuals. Valuable public data repositories such as TalkBank have made it possible for researchers in the computational community to join forces and learn from each other to make significant advances in this area. However, due to variability in approaches and data selection strategies used by various researchers, results obtained by different groups have been difficult to compare directly. In this paper, we present TRESTLE (Toolkit for Reproducible Execution of Speech Text and Language Experiments), an open source platform that focuses on two datasets from the TalkBank repository with dementia detection as an illustrative domain. Successfully deployed in the hackallenge (Hackathon/Challenge) of the International Workshop on Health Intelligence at AAAI 2022, TRESTLE provides a precise digital blueprint of the data pre-processing and selection strategies that can be reused via TRESTLE by other researchers seeking comparable results with their peers and current state-of-the-art (SOTA) approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信