D. G. Nielsen, P. R. Andersen, Jakob S. Jensen, F. Agerkvist
{"title":"扬声器有限元集总参数模型中集总单元最优值的估计","authors":"D. G. Nielsen, P. R. Andersen, Jakob S. Jensen, F. Agerkvist","doi":"10.1142/S2591728520500127","DOIUrl":null,"url":null,"abstract":"Finite element methods are progressively being utilized to assist in the continuous development of loudspeakers. The core of this paper is the method of lumping certain parts of the finite element model, creating a significant reduction in the model complexity that allows for e.g. faster structural optimization. This is illustrated in the paper with a loudspeaker example where the electromagnetic parts are lumped as well as the spider. It is shown that the simplified model still matches the complex response of the full FE model at very high frequencies.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"49 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation of Optimal Values for Lumped Elements in a Finite Element — Lumped Parameter Model of a Loudspeaker\",\"authors\":\"D. G. Nielsen, P. R. Andersen, Jakob S. Jensen, F. Agerkvist\",\"doi\":\"10.1142/S2591728520500127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite element methods are progressively being utilized to assist in the continuous development of loudspeakers. The core of this paper is the method of lumping certain parts of the finite element model, creating a significant reduction in the model complexity that allows for e.g. faster structural optimization. This is illustrated in the paper with a loudspeaker example where the electromagnetic parts are lumped as well as the spider. It is shown that the simplified model still matches the complex response of the full FE model at very high frequencies.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S2591728520500127\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S2591728520500127","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Estimation of Optimal Values for Lumped Elements in a Finite Element — Lumped Parameter Model of a Loudspeaker
Finite element methods are progressively being utilized to assist in the continuous development of loudspeakers. The core of this paper is the method of lumping certain parts of the finite element model, creating a significant reduction in the model complexity that allows for e.g. faster structural optimization. This is illustrated in the paper with a loudspeaker example where the electromagnetic parts are lumped as well as the spider. It is shown that the simplified model still matches the complex response of the full FE model at very high frequencies.
期刊介绍:
The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics.
Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.