{"title":"维纳泛函的小波变换及其应用","authors":"M. Claude","doi":"10.1080/17442508.2013.879144","DOIUrl":null,"url":null,"abstract":"The wavelet transform is defined for Wiener functionals. We characterize global and local regularities of Wiener functionals and we give a criterion for the existence and regularity of densities. Such a criterion is applied to diffusion processes and to the solutions to backward stochastic differential equations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The wavelet transform for Wiener functionals and some applications\",\"authors\":\"M. Claude\",\"doi\":\"10.1080/17442508.2013.879144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wavelet transform is defined for Wiener functionals. We characterize global and local regularities of Wiener functionals and we give a criterion for the existence and regularity of densities. Such a criterion is applied to diffusion processes and to the solutions to backward stochastic differential equations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2014-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2013.879144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.879144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The wavelet transform for Wiener functionals and some applications
The wavelet transform is defined for Wiener functionals. We characterize global and local regularities of Wiener functionals and we give a criterion for the existence and regularity of densities. Such a criterion is applied to diffusion processes and to the solutions to backward stochastic differential equations.