通过直方图分离本地和洗牌差分隐私

Victor Balcer, Albert Cheu
{"title":"通过直方图分离本地和洗牌差分隐私","authors":"Victor Balcer, Albert Cheu","doi":"10.4230/LIPIcs.ITC.2020.1","DOIUrl":null,"url":null,"abstract":"Recent work in differential privacy has highlighted the shuffled model as a promising avenue to compute accurate statistics while keeping raw data in users' hands. We present a protocol in this model that estimates histograms with error independent of the domain size. This implies an arbitrarily large gap in sample complexity between the shuffled and local models. On the other hand, the models are equivalent when we impose the constraints of pure differential privacy and single-message randomizers.","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"53 1","pages":"1:1-1:14"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Separating Local & Shuffled Differential Privacy via Histograms\",\"authors\":\"Victor Balcer, Albert Cheu\",\"doi\":\"10.4230/LIPIcs.ITC.2020.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work in differential privacy has highlighted the shuffled model as a promising avenue to compute accurate statistics while keeping raw data in users' hands. We present a protocol in this model that estimates histograms with error independent of the domain size. This implies an arbitrarily large gap in sample complexity between the shuffled and local models. On the other hand, the models are equivalent when we impose the constraints of pure differential privacy and single-message randomizers.\",\"PeriodicalId\":6403,\"journal\":{\"name\":\"2007 IEEE International Test Conference\",\"volume\":\"53 1\",\"pages\":\"1:1-1:14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ITC.2020.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITC.2020.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

最近在差分隐私方面的研究突出表明,洗牌模型是一种很有前途的方法,可以计算出准确的统计数据,同时将原始数据保留在用户手中。我们在该模型中提出了一种估计直方图的协议,其误差与域大小无关。这意味着在洗牌模型和局部模型之间的样本复杂度存在任意大的差距。另一方面,当我们施加纯差分隐私和单消息随机化器的约束时,模型是等效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating Local & Shuffled Differential Privacy via Histograms
Recent work in differential privacy has highlighted the shuffled model as a promising avenue to compute accurate statistics while keeping raw data in users' hands. We present a protocol in this model that estimates histograms with error independent of the domain size. This implies an arbitrarily large gap in sample complexity between the shuffled and local models. On the other hand, the models are equivalent when we impose the constraints of pure differential privacy and single-message randomizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信