William Gao, April Wang, G. Metzer, Raymond A. Yeh, R. Hanocka
{"title":"四面体网格生成的卷积神经网络","authors":"William Gao, April Wang, G. Metzer, Raymond A. Yeh, R. Hanocka","doi":"10.48550/arXiv.2210.05735","DOIUrl":null,"url":null,"abstract":"We present TetGAN, a convolutional neural network designed to generate tetrahedral meshes. We represent shapes using an irregular tetrahedral grid which encodes an occupancy and displacement field. Our formulation enables defining tetrahedral convolution, pooling, and upsampling operations to synthesize explicit mesh connectivity with variable topological genus. The proposed neural network layers learn deep features over each tetrahedron and learn to extract patterns within spatial regions across multiple scales. We illustrate the capabilities of our technique to encode tetrahedral meshes into a semantically meaningful latent-space which can be used for shape editing and synthesis. Our project page is at https://threedle.github.io/tetGAN/.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"14 1","pages":"365"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"TetGAN: A Convolutional Neural Network for Tetrahedral Mesh Generation\",\"authors\":\"William Gao, April Wang, G. Metzer, Raymond A. Yeh, R. Hanocka\",\"doi\":\"10.48550/arXiv.2210.05735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present TetGAN, a convolutional neural network designed to generate tetrahedral meshes. We represent shapes using an irregular tetrahedral grid which encodes an occupancy and displacement field. Our formulation enables defining tetrahedral convolution, pooling, and upsampling operations to synthesize explicit mesh connectivity with variable topological genus. The proposed neural network layers learn deep features over each tetrahedron and learn to extract patterns within spatial regions across multiple scales. We illustrate the capabilities of our technique to encode tetrahedral meshes into a semantically meaningful latent-space which can be used for shape editing and synthesis. Our project page is at https://threedle.github.io/tetGAN/.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"14 1\",\"pages\":\"365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.05735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TetGAN: A Convolutional Neural Network for Tetrahedral Mesh Generation
We present TetGAN, a convolutional neural network designed to generate tetrahedral meshes. We represent shapes using an irregular tetrahedral grid which encodes an occupancy and displacement field. Our formulation enables defining tetrahedral convolution, pooling, and upsampling operations to synthesize explicit mesh connectivity with variable topological genus. The proposed neural network layers learn deep features over each tetrahedron and learn to extract patterns within spatial regions across multiple scales. We illustrate the capabilities of our technique to encode tetrahedral meshes into a semantically meaningful latent-space which can be used for shape editing and synthesis. Our project page is at https://threedle.github.io/tetGAN/.