带骨折间隙的人股骨DCP假体的有限元分析

T. Fongsamootr, S. Bernard
{"title":"带骨折间隙的人股骨DCP假体的有限元分析","authors":"T. Fongsamootr, S. Bernard","doi":"10.1520/JAI103924","DOIUrl":null,"url":null,"abstract":"Our research aims to determine the optimal screw configuration of a dynamic compressive plate (DCP) implant on a human femoral bone. The number of screws and the positioning are sensitive parameters of DCP implant stress repartition. Several previous studies have assessed the influence of thescrew configuration of a DCP implant. Using a realistic geometry of a human left femur and the finite element method (FEM), the calculations in those papers were based on a safe femoral bone. This study evaluates the influence of the application of a simulated fracture gap in the diaphyseal part on the stress repartition of the bone, plate, and screws. The main purpose is to complete the existing studies in order to provide surgeons with information on an optimal prosthesis screw configuration. The plate and screws were modeled and assembled on a cracked femoral bone. The hip region of the femur was loaded with vertical and horizontal forces. The femoral bone was cut into two parts because of the gap: the top part, close to thehip, and the bottom part, close to the knee. The FEM analysis shows that the stresses in screws located in the top part of the femoral bone had significantly increased, whereas the stresses on the plate and the bone had been reduced.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FEM Analysis of a DCP Implant on a Human Femoral Bone With a Fracture Gap\",\"authors\":\"T. Fongsamootr, S. Bernard\",\"doi\":\"10.1520/JAI103924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our research aims to determine the optimal screw configuration of a dynamic compressive plate (DCP) implant on a human femoral bone. The number of screws and the positioning are sensitive parameters of DCP implant stress repartition. Several previous studies have assessed the influence of thescrew configuration of a DCP implant. Using a realistic geometry of a human left femur and the finite element method (FEM), the calculations in those papers were based on a safe femoral bone. This study evaluates the influence of the application of a simulated fracture gap in the diaphyseal part on the stress repartition of the bone, plate, and screws. The main purpose is to complete the existing studies in order to provide surgeons with information on an optimal prosthesis screw configuration. The plate and screws were modeled and assembled on a cracked femoral bone. The hip region of the femur was loaded with vertical and horizontal forces. The femoral bone was cut into two parts because of the gap: the top part, close to thehip, and the bottom part, close to the knee. The FEM analysis shows that the stresses in screws located in the top part of the femoral bone had significantly increased, whereas the stresses on the plate and the bone had been reduced.\",\"PeriodicalId\":15057,\"journal\":{\"name\":\"Journal of Astm International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astm International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/JAI103924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI103924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们的研究旨在确定人类股骨上动态加压钢板(DCP)植入物的最佳螺钉配置。螺钉数量和定位是影响DCP种植体应力再分配的敏感参数。先前的一些研究已经评估了螺钉配置对DCP种植体的影响。利用人类左股骨的真实几何形状和有限元法(FEM),这些论文中的计算都是基于安全的股骨。本研究评估在骨干部分应用模拟骨折间隙对骨、钢板和螺钉应力再分配的影响。主要目的是完成现有的研究,以便为外科医生提供最佳假体螺钉配置的信息。钢板和螺钉在骨折的股骨上建模和组装。股骨髋部受到垂直和水平方向的作用力。因为有这个缺口,股骨被切成两部分:顶部靠近臀部,底部靠近膝盖。有限元分析表明,位于股骨顶部的螺钉的应力明显增加,而钢板和骨的应力有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FEM Analysis of a DCP Implant on a Human Femoral Bone With a Fracture Gap
Our research aims to determine the optimal screw configuration of a dynamic compressive plate (DCP) implant on a human femoral bone. The number of screws and the positioning are sensitive parameters of DCP implant stress repartition. Several previous studies have assessed the influence of thescrew configuration of a DCP implant. Using a realistic geometry of a human left femur and the finite element method (FEM), the calculations in those papers were based on a safe femoral bone. This study evaluates the influence of the application of a simulated fracture gap in the diaphyseal part on the stress repartition of the bone, plate, and screws. The main purpose is to complete the existing studies in order to provide surgeons with information on an optimal prosthesis screw configuration. The plate and screws were modeled and assembled on a cracked femoral bone. The hip region of the femur was loaded with vertical and horizontal forces. The femoral bone was cut into two parts because of the gap: the top part, close to thehip, and the bottom part, close to the knee. The FEM analysis shows that the stresses in screws located in the top part of the femoral bone had significantly increased, whereas the stresses on the plate and the bone had been reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信